A 12.2-kg cylinder roils without slipping on a rough surface. At an instant when its center of gravity has a speed of 11.7 m/s, determine the following (a) the translational kinetic energy of its center of gravity (b) the rotational kinetic energy about its center of gravity 1 (c) its total kinetic energy

Answers

Answer 1

(a) The translational kinetic energy of the cylinder's centre of gravity is 729.63 J.

(b) The rotational kinetic energy about its centre of gravity is 729.63 J.

(c) The total kinetic energy of the cylinder is 1,459.26 J.

(a) To find the translational kinetic energy, we use the formula KE_trans = (1/2) * m * v^2, where m is the mass of the cylinder and v is the speed of its centre of gravity. Substituting the given values, KE_trans = (1/2) * 12.2 kg * (11.7 m/s)^2 = 729.63 J.

(b) The rotational kinetic energy about the centre of gravity can be calculated using the formula KE_rot = (1/2) * I * ω^2, where I is the moment of inertia and ω is the angular velocity. Since the cylinder rolls without slipping, we can relate the linear velocity of the centre of gravity to the angular velocity by v = ω * R, where R is the radius of the cylinder.

Rearranging the equation, we have ω = v / R. The moment of inertia for a cylinder rotating about its central axis is I = (1/2) * m * R^2. Substituting the values, KE_rot = (1/2) * (1/2) * 12.2 kg * (11.7 m/s / R)^2 = 729.63 J.

(c) The total kinetic energy is the sum of the translational and rotational kinetic energies, which gives us 1,459.26 J.

To learn more about translational kinetic energy

Click here brainly.com/question/32680235

#SPJ11


Related Questions

If la on a given scale has a frequency of 440 Hz,
(a) What is the ideal ratio frequency of do at the bottom of this scale?
If re on a given scale has a frequency of 297 Hz,
(b) What is the ideal ratio frequency of do at the bottom of this scale?

Answers

(a) The ideal ratio frequency of "do" at the bottom of the scale with la having a frequency of 440 Hz is 220 Hz.

(b) The ideal ratio frequency of "do" at the bottom of the scale with re having a frequency of 297 Hz is 148.5 Hz.

(a) The given scale is based on the concept of a musical octave, which divides the frequency range into a series of eight notes. The note "do" represents the first note of the octave. To find the ideal ratio frequency of "do," we need to halve the frequency of the starting note "la" at 440 Hz. Therefore, the ideal ratio frequency of "do" at the bottom of this scale is 220 Hz.

(b) In the case where the note "re" has a frequency of 297 Hz, we still need to find the ideal ratio frequency of "do" at the bottom of the scale. Similar to the previous explanation, we need to halve the frequency of the starting note "re" to determine the ideal ratio frequency of "do." Therefore, the ideal ratio frequency of "do" at the bottom of this scale with re at 297 Hz is 148.5 Hz.

Learn more about frequency

brainly.com/question/14680642

#SPJ11

0.051-kg mass attached to a spring oscillates vertically at 2.49 hz. how far did the spring stretch when the mass was first attached?

Answers

When the mass was first attached, the spring stretched approximately 0.303 meters.

To determine how far the spring stretched when the mass was first attached, we need to use the formula for the frequency of a simple harmonic oscillator.

The formula for the frequency of a mass-spring system is given by:

f = (1 / (2π)) * √(k / m)

Where:

f is the frequency of oscillation (2.49 Hz in this case)

k is the spring constant

m is the mass

We can rearrange the formula to solve for the spring constant:

k = (4π² * m * f²)

Given:

Mass (m) = 0.051 kg

Frequency (f) = 2.49 Hz

Substituting the values into the formula, we can calculate the spring constant (k):

k = (4π² * 0.051 * (2.49)²)

k ≈ 1.652 N/m

The spring constant (k) represents the stiffness of the spring. With this information, we can calculate how far the spring stretched when the mass was first attached.

The displacement (x) of the spring is given by Hooke's Law:

x = (m * g) / k

Where:

m is the mass (0.051 kg)

g is the acceleration due to gravity (approximately 9.8 m/s²)

k is the spring constant (1.652 N/m)

Substituting the values:

x = (0.051 * 9.8) / 1.652

x ≈ 0.303 m

Therefore, when the mass was first attached, the spring stretched approximately 0.303 meters.

To learn more about, acceleration, click here, https://brainly.com/question/30499732

#SPJ11

Two blocks connected by a cord passing over a small, frictionless pulley rest on frictionless planes. (a) Which way will the system move when the blocks are released from rest?

Answers

The system will move in the direction of the block with greater mass. As it experiences a greater force of gravity causing friction.

In this system, the blocks are connected by a cord passing over a frictionless pulley. When the blocks are released from rest, the force of gravity acts on both blocks, pulling them downward. The block with greater mass will experience a larger force due to gravity since the force is directly proportional to mass.

Since there is no friction to oppose the motion, the block with greater force will accelerate faster. As a result, it will descend more quickly, pulling the lighter block upwards. This creates a net force in the direction of the block with greater mass, causing the system to move in that direction.

The movement of the system is determined by the imbalance in forces between the two blocks. The heavier block exerts a greater downward force, while the lighter block exerts a smaller upward force. The net force, which is the difference between these forces, causes an acceleration in the direction of the heavier block. Therefore, the system will move in the direction of the block with greater mass when the blocks are released from rest.

To learn more about friction click here:

brainly.com/question/24338873

#SPJ11

3- In the graph shown, q=-24 x 10-7C, the electric field at the point A) 135 x 10°N/C, downward. B) 54 x 10'N/C, downward. C) 135 x 10'N/C, upward. D) 54 x 10'N/C, upward.

Answers

The correct answer is C) 135 x 10^6 N/C, upward. The magnitude is calculated using the formula for the electric field due to a point charge.

To determine the electric field at point A, we need to consider the direction and magnitude of the electric field due to the charge q.

The electric field due to a point charge is given by the equation:

E = k * (q / r^2)

Where:

E is the electric field

k is the electrostatic constant (9 x 10^9 N m^2/C^2)

q is the charge

r is the distance from the charge to the point where the field is measured

In the given problem, the charge q is -24 x 10^-7 C. The electric field is to be calculated at point A.

Now, the electric field always points away from a positive charge and towards a negative charge. In this case, since q is negative, the electric field will point towards the charge.

Therefore, the electric field at point A will be directed upward. The magnitude of the electric field can be calculated using the given value of q and the distance between the charge and point A (which is not provided in the question).

The electric field at point A is 135 x 10^6 N/C, upward. This is determined by considering the direction and magnitude of the electric field due to the given charge q. The magnitude is calculated using the formula for the electric field due to a point charge.

To know more about electric field ,visit:

https://brainly.com/question/19878202

#SPJ11

A solid sphere of mass 1.600 Kg and a radius of 20 cm, rolls without slipping along a horizontal surface with a linear velocity of 5.0 m/s. It reaches an incline that makes an angle of 30° with the horizontal a- Ignoring the losses due to the friction, to what distance does the sphere go up on the incline? b- After reaching its maximum position on the incline, what will be its velocity at the bottom of the incline on its way back?

Answers

a) Given that a solid sphere of mass 1.600 Kg and a radius of 20 cm, rolls without slipping along a horizontal surface with a linear velocity of 5.0 m/s

We are supposed to determine the distance covered by the solid sphere up the incline ignoring the losses due to the friction.

To determine the distance covered up the incline, we can use the principle of conservation of energy.

Therefore, the potential energy of the sphere will be converted to kinetic energy as it goes up the incline.

The work done against gravity is the difference in the potential energy, given by:

mgh = (1/2)mv²

where,m = 1.6 kg, v = 5.0 m/s, g = 9.81 m/s², h = 0.2

m(1/2)mv² = mghv² = 2mghv² = 2 × 1.6 × 9.81 × 0.2v²

= 6.2624v = √6.2624v = 2.504 m/s

Distance covered, s = (v² – u²) / 2g Where,u = 5.0 ms²= (2.504² – 5.0²) / (2 × 9.81)= 0.2713 m.

So, the distance covered by the solid sphere is 0.2713 m.

#SPJ11

Learn more about friction and velocity https://brainly.com/question/24338873

One of the brighter blue stars in the Orion constellation is Bellatrix. This "female warrior" star is 5.7 times wider than our Sun, and has a surface temperature of about 21500 K. Bellatrix is about 243 light-years away. This means that the light we see today from Bellatrix left the star around the time when

Answers

The light we see today from the star Bellatrix in the Orion constellation, which is about 243 light-years away, left the star around 243 years ago.

Since light travels at a finite speed, it takes time for the light from distant stars to reach us on Earth.

The speed of light is approximately 299,792 kilometers per second or about 186,282 miles per second. Therefore, when we observe a star that is a certain distance away, we are essentially looking back in time.

In the case of Bellatrix, which is about 243 light-years away, the light we see today left the star around 243 years ago. This means that the light we currently observe from Bellatrix represents its appearance as it was approximately 243 years in the past.

The star's current state may have changed since then, but we are only able to perceive the light that has reached us over that time span.

Learn more about speed here: brainly.com/question/28224010

#SPJ11

Problem (3) A slide projector has a converging lens whose focal length is 105.mm. (a) How far (in meters) from the lens must the screen be located if a slide is placed 108. mm from the lens? (b) If the slide measures 24.0 mm×36.0 mm, what are the dimensions (in mm ) of its image?

Answers

a) To determine the distance of the screen from the slide projector, we can use the lens formula. Let's recall the lens formula:Object distance (u) + Image distance (v) = Focal length (f)Given that the focal length of the converging lens is 105mm, the object distance is 108mm.Substituting the given values in the lens formula;u + v

= foru = 108mm, f

= 105mmTherefore, 108mm + v

= 105mmv

= - 3mmSince the image is on the other side of the lens, it is a virtual image. Thus, the screen must be placed 3mm from the lens. To convert mm to meters, we divide by 1000; hence, the screen is located at 0.003m.b) To determine the dimensions of the slide image, we use the thin lens equation:magnification (m) = image height (h')/object height (h)h = 24.0 mm (width), h

= 36.0 mm (height), image height (h')

= v * tan θIn part a, we determined that the image distance is -3 mm. We will use this value to determine the image height. To do so, we must first determine the angle of the image formed by the lens, θ. Recall the formula;tan θ = (h')/v, thus θ

= tan-1 (h'/v). Let's find the value of θ by substituting the value of v.tan θ

= (h')/v, where v

= - 3mm, h

= 36.0mm, and h

= 24.0mmθ

= tan-1(h'/v)θ

= tan-1 (24.0 / (- 3.0))θ

= tan-1 (- 8)θ

= - 83.66°Now we can calculate the image height. We can use trigonometry to calculate the height since we have the angle. Thus,h'

= v * tan θh'

= (- 3mm) * tan (- 83.66°)h'

= - 106.67mmSince the image is virtual, the dimensions of the slide image are 106.67mm × 160.0mm

To know more about converging visit:

https://brainly.com/question/29258536

#SPJ11

A submarine (sub A) travels through water at a speed of 8.00m/s in the direction shown, emitting a sonar wave at a frequency of 1000 Hz in all directions. A second submarine (sub B) is traveling with a speed of vB, in the direction shown. (Figure 1)
The speed of sound in the water is 1500 m/s.
1. What is the frequency detected by an observer on sub B, if sub A moves as stated above and sub B is at rest (i.e. vB=0)? Give your answers to the nearest tenth of a Hz (e.g. 45.3 Hz).
2. What is the frequency detected by an observer on sub B, if sub A moves as stated above and sub B is moving to the right with a speed of vB=12 m/s? Give your answers to the nearest tenth of a Hz (e.g. 45.3 Hz).
3. Suppose again that sub A moves as stated above and sub B is at rest. The signal sent out by sub A bounces off of sub B and reflects back to sub A. What is the frequency an observer on sub A will detect? Give your answers to the nearest tenth of a Hz (e.g. 45.3 Hz).

Answers

When Sub B is at rest (vB=0), an observer on Sub B will detect the frequency of the sonar wave emitted by Sub A to be 1000 Hz, the same as the emitted frequency.

When Sub B is moving to the right with a speed of vB=12 m/s, an observer on Sub B will detect a Doppler-shifted frequency of approximately 956.5 Hz. This frequency is lower than the emitted frequency due to the relative motion between the two submarines.

When the sonar signal emitted by Sub A bounces off Sub B and reflects back, an observer on Sub A will detect a frequency of approximately 1050 Hz. This frequency is higher than the emitted frequency due to the Doppler effect caused by the motion of Sub B.

When Sub B is at rest, the observed frequency is the same as the emitted frequency. The motion of Sub A does not affect the frequency detected by an observer on Sub B since the observer is stationary with respect to the water. Therefore, the frequency detected by the observer on Sub B is 1000 Hz, the same as the emitted frequency.

When Sub B is moving to the right with a speed of vB=12 m/s, there is relative motion between Sub A and Sub B. This relative motion causes a Doppler shift in the frequency of the sonar wave detected by an observer on Sub B. The Doppler formula for frequency shift is given by:

f' = f * (v_sound + v_observer) / (v_sound + v_source)

Where:

f' is the detected frequency,

f is the emitted frequency,

v_sound is the speed of sound in water (1500 m/s),

v_observer is the velocity of the observer (Sub B),

v_source is the velocity of the source (Sub A).Plugging in the values, we get:

f' = 1000 Hz * (1500 m/s + 12 m/s) / (1500 m/s + 8 m/s) ≈ 956.5 Hz Therefore, the frequency detected by an observer on Sub B is approximately 956.5 Hz.

Learn more about Doppler effect click here: brainly.com/question/28106478

#SPJ11

A 3.90 kg weight is placed on top of a vertical spring, which compresses a distance of 2.52 cm. Calculate the force constant (in N/m) of the spring.
A vertical spring stretches 3.4 cm when a 12-g object is hung from it. The object is replaced with a block of mass 28 g that oscillates up and down in simple harmonic motion. Calculate the period of motion.

Answers

1. The force constant (in N/m) of the spring is 1515.87 N/m

2. The period of motion of the block is 0.198 s

Question 1: A spring is an object that is characterized by the amount of force it can apply when stretched, squeezed, or twisted. The force constant k of a spring represents the amount of force it takes to stretch it one meter.

The equation is F = -kx,

where F is the force,

           x is the displacement from the spring's resting position, and

           k is the spring constant.

Since x is in meters, k is in N/m. We can utilize this formula to determine the spring constant of the given spring when a weight of 3.90 kg is positioned on it, causing it to compress by 2.52 cm.x = 2.52 cm = 0.0252 m, m = 3.90 kg

The force on the spring

F = -kx,

F = mg = 3.9 x 9.8 = 38.22 N-38.22 N = k(0.0252 m)k = -38.22 / 0.0252 = -1515.87 N/m

Therefore, the force constant (in N/m) of the spring is 1515.87 N/m.

Question 2: When the spring is displaced, the block will oscillate up and down in simple harmonic motion, with a period of motion given by:

T = 2π * √(m/k)

The period of motion is determined by the mass of the block and the force constant of the spring, which we've calculated previously. Given that m = 28 g = 0.028 kg and k = 1515.87 N/m, we can now find the period of motion:

T = 2π * √(0.028 / 1515.87)T = 0.198 s

Therefore, the period of motion of the block is 0.198 s.

Learn more about force constant at https://brainly.com/question/25313999

#SPJ11

An electric current is connected to an incandescent light bulb
which has its glass bulb removed from it. The tungsten filament
burns out immediately after it glows. Explain it briefly.

Answers

When an electric current is applied to an incandescent light bulb without its glass bulb, the tungsten filament quickly burns out due to oxidation from exposure to oxygen in the air.

When an electric current is connected to an incandescent light bulb without its glass bulb, the tungsten filament inside the bulb quickly burns out. This happens because the tungsten filament is designed to operate within the controlled environment of the bulb, which is filled with an inert gas (usually argon or nitrogen) to prevent oxidation and prolong the filament's lifespan.

Without the glass bulb, the filament is exposed to the surrounding air, which contains oxygen. When the filament heats up due to the current passing through it, the oxygen in the air reacts with the hot tungsten, causing it to oxidize and degrade rapidly. This oxidation process leads to the immediate burnout of the filament, rendering the light bulb inoperative.

Therefore, the absence of the glass bulb exposes the tungsten filament to oxygen, leading to oxidation and the subsequent failure of the filament.

To learn more about electric current: https://brainly.com/question/29766827

#SPJ11

a sound wave to measure the water depth moves at a speed of 1500 km/s. it takes the sound wave 8 seconds until the sound has been re-recorded at the vessel from which is was released. how deep is the ocean at this location?

Answers

The ocean is 6km deep at this location. The speed of the sound wave is 1500 km/s and it takes the sound wave 8 seconds until it's re-recorded at the vessel from which it was released.

The formula for the depth of an ocean or sea is given by the equation: Depth = Speed x Time / 2

where Speed is the velocity of the wave in the water and Time is the time the wave takes to travel to the sea floor and back to the surface. From the problem statement, the speed of the sound wave to measure the water depth is 1500 km/s and the time taken for the wave to return to the vessel from which it was released is 8 seconds.

Hence, the depth of the ocean is given by: Depth = (1500 x 8) / 2= 6000m = 6km

to know more about sound waves here:

brainly.com/question/31851162

#SPJ11

A solenoid has 2.0 turns per centimetre and a current of 140 A. What is the magnetic field at the center of the solenoid? If you are staring at the solenoid head on, and the current flow appears clockwise, is the North end of the solenoid facing you or away from you?

Answers

The magnetic field at the center of a solenoid with 2.0 turns per centimeter and a current of 140 A is 0.44 T. If you are staring at the solenoid head on, and the current flow appears clockwise, the North end of the solenoid is facing away from you.

The magnetic field inside a solenoid is proportional to the number of turns per unit length, the current, and the permeability of free space. The equation for the magnetic field inside a solenoid is:

B = µ0 * n * I

where:

* B is the magnetic field strength (in teslas)

* µ0 is the permeability of free space (4π × 10-7 T⋅m/A)

* n is the number of turns per unit length (2.0 turns/cm)

* I is the current (140 A)

Plugging these values into the equation, we get:

B = (4π × 10-7 T⋅m/A) * (2.0 turns/cm) * (140 A) = 0.44 T

This means that the magnetic field at the center of the solenoid is 0.44 T.

The direction of the magnetic field inside a solenoid is determined by the direction of the current flow. If the current flows in a clockwise direction when viewed from the end of the solenoid, the magnetic field will point in the direction of the thumb of your right hand when you curl your fingers in the direction of the current flow.

In this case, the current flows in a clockwise direction when viewed from the end of the solenoid. Therefore, the magnetic field points away from you. This means that the North end of the solenoid is facing away from you.

To learn more about solenoid here brainly.com/question/21842920

#SPJ11

1. Explain what Raman Spectroscopy is ??
2. How would spectroscopy be used in studying the environments
of exoplanets ??

Answers

1. Raman Spectroscopy: Analyzing light scattering for molecular information.

2. Spectroscopy for Exoplanets: Studying atmospheric composition and properties through light analysis.

1. Raman Spectroscopy is based on the Raman effect, discovered by Sir C.V. Raman in 1928. It involves shining a monochromatic light source, typically a laser, onto a sample and measuring the scattered light. When the photons interact with the sample, some of them undergo inelastic scattering, resulting in a shift in energy known as the Raman scattering. This shift corresponds to the energy levels associated with molecular vibrations, rotations, and other modes.

By analyzing the Raman spectrum, which consists of the scattered light intensities at different energy shifts, valuable information about the chemical composition, molecular structure, and bonding of the sample can be obtained. Raman spectroscopy is widely used in various fields, including chemistry, materials science, pharmaceuticals, and forensics, for identification, characterization, and analysis of substances.

2. When light from a distant star passes through the atmosphere of an exoplanet or when an exoplanet emits its own light, the different elements and molecules present in the atmosphere can absorb or emit specific wavelengths of light. This absorption or emission produces characteristic spectral lines or bands in the electromagnetic spectrum.

By analyzing the spectra obtained from exoplanet observations, astronomers can identify the presence of specific molecules and elements in the atmosphere, such as water vapor, carbon dioxide, methane, and other gases. These spectral fingerprints provide insights into the composition, temperature, and physical properties of the exoplanet's atmosphere.

Spectroscopy can also reveal information about the exoplanet's atmospheric dynamics, including temperature variations, cloud formations, and the presence of atmospheric layers. This data helps in studying the potential habitability of exoplanets and understanding their formation and evolution processes. Spectroscopic observations of exoplanets are conducted using specialized instruments such as spectrographs, which analyze the light's wavelength distribution and intensity.

learn more about Raman Spectroscopy here'

https://brainly.com/question/31171428

#SPJ11

A 25.0 cm tall bunny is sitting at 2.0 m in front of a camera whose focal length is 50.0 mm. How tall is bunny's image on the detector?A. 1.6 cm B. 6.0 mm C. 7.0 mm D. 2.5 mm E. 6.4 mm F. 5.0 mm G. 5.7 mm

Answers

The height of the bunny's image on the detector is approximately 0.2425 mm.

Focal length f = 50.0 mm

Image distance i = 2.0 m = 2000 mm

Object height h = 25.0 cm = 250 mmT

We know that by the thin lens formula;`

1/f = 1/v + 1/u`

where u is the object distance and v is the image distance.

Since we are given v and f, we can find u. Then we can use the magnification formula;

`m = -v/u = y/h` to find the image height y.

By the lens formula;`

1/f = 1/v + 1/u``

1/v = 1/f - 1/u``

1/v = 1/50 - 1/2000``

1/v = (2000 - 50)/100000`

`v = 97/5 = 19.4 mm

`The image is formed at 19.4 mm behind the lens.

Now, using the magnification formula;`

m = -v/u = y/h`

`y = mh = (-v/u)h`

`y = (-19.4/2000)(250)`

y = -0.2425 mm

The negative sign indicates that the image is inverted, which is consistent with the case of an object placed beyond the focal point of a convex lens. Since the height cannot be negative, we can take the magnitude to get the final answer; Image height = |y| = 0.2425 mm

Thus, the height of the bunny's image on the detector is approximately 0.2425 mm.

Learn more about image https://brainly.com/question/14097025

#SPJ11

A solid conducting sphere with radius R that carries positive charge (3Q ) is concentric with a very thin insulating shell of radius 4R that also carries charge 4Q.
a) Find the electric field (magnitude and direction) in each of the regions 0 4R.
b) Graph the electric-field magnitude as a function of r.

Answers

a) Electric Field in each of the regions (0,4R) is given below:

Inside the sphere: The electric field inside the sphere is zero.  It can be proven by Gauss’s Law.

Outside the sphere: The electric field outside the sphere is given by:

[tex]$$E = \frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}$$[/tex]

Where Q is the charge on the sphere, r is the distance from the center of the sphere and ε0 is the electric constant (8.85 × 10-12).

Charge on the insulating shell: The charge on the insulating shell is 4Q.

Direction of the electric field: The direction of the electric field due to a positive charge is radially outward.

b) Graph of Electric-field magnitude as a function of r: The graph of Electric-field magnitude as a function of r is given below: The electric field is zero inside the sphere (r < R).

The electric field increases linearly outside the sphere till it reaches the insulating shell.

The electric field decreases linearly outside the insulating shell till it reaches zero as r tends to infinity.

Learn more about Electric-field magnitude: https://brainly.com/question/28561944

#SPJ11

are fixed-fixed Consider a standing wave on a string of finite length L. If the speed of waves on the string is 10 m/s, and the distance between consecutive nodes is 0.25m, then the frequency is: 20 Hz None of the listed options 10 Hz described by v1-Asin(kx

Answers

The frequency of the standing wave on a string of finite length L is 40 Hz.

The given values of L and the distance between two consecutive nodes 0.25m on a string, v = 10 m/s, the frequency of standing wave on a string is to be calculated. In order to calculate frequency, the formula is given as f = v/λ (where f = frequency, v = velocity, and λ = wavelength)

Given,L = length of string = Distance between two consecutive nodes = 0.25mThe velocity of wave (v) = 10m/s

Frequency (f) = ?

Now, let's find the wavelength (λ).λ = 2L/n (where n is an integer, which in this case is 2 as the wave is a standing wave)λ = 2 (0.25m)/2 = 0.25m

Therefore, the wavelength (λ) is 0.25m

Substitute the value of v and λ in the formula:f = v/λ = (10m/s)/(0.25m) = 40 Hz

Thus, the frequency of the standing wave on a string is 40 Hz.

Therefore, the frequency of the standing wave on a string of finite length L is 40 Hz.

To know more about frequency visit

brainly.com/question/29739263

#SPJ11

A skater spins at an initial angular velocity of 11 rads/s with his arms outstretched. The skater then lowers his arms, thereby decreasing his moment of inertia by a factor 5. What is the skater's final angular velocity? Assume that any friction between the skater's skates and the ice is negligible.

Answers

The skater's final angular velocity is 55 rad/s.

We can apply the principle of conservation of angular momentum to solve this problem. According to this principle, the initial and final angular momentum of the skater will be equal.

The formula for angular momentum is given by:

L = I * ω

where

L is the angular momentum,

I is the moment of inertia, and

ω is the angular velocity.

The skater starts with an angular velocity of 11 rad/s and his arms are outstretched. [tex]I_i_n_i_t_i_a_l[/tex] will be used to represent the initial moment of inertia.

The skater's moment of inertia now drops by a factor of 5 as he lowers his arms. Therefore, [tex]I_f_i_n_a_l[/tex]= [tex]I_i_n_i_t_i_a_l[/tex] / 5 can be used to express the final moment of inertia.

According to the conservation of angular momentum:

[tex]L_i=L_f[/tex]     (where i= initial, f= final)

[tex]I_i *[/tex]ω[tex]_i[/tex] = I[tex]_f[/tex] *ω[tex]_f[/tex]

Substituting the given values:

[tex]I_i[/tex]* 11 = ([tex]I_i[/tex] / 5) * ω_f

11 = ω[tex]_f[/tex] / 5

We multiply both the sides by 5.

55 = ω[tex]_f[/tex]

Therefore, the skater's final angular velocity is 55 rad/s.

Learn more about angular momentum, here:

https://brainly.com/question/29563080

#SPJ4

The picture includes the following objects . Cyan wagon with red edges and frictionless wheels • Brown crate Purple box • Blond hair child touching wagon • Brown hair child holding rope • Rope

Answers

The picture depicts various objects, including a cyan wagon with red edges and frictionless wheels, a brown crate, a purple box, a blond-haired child touching the wagon, a brown-haired child holding a rope, and a rope.

In the picture, we can see a cyan wagon with red edges and frictionless wheels. The cyan color and red edges make the wagon visually distinct. The presence of frictionless wheels indicates that the wagon can move with minimal resistance.

Next to the wagon, there is a brown crate, which appears to be a storage container. Additionally, there is a purple box, which adds color contrast to the scene. In the picture, we also observe a blond-haired child touching the wagon, possibly indicating interaction or playfulness.

Moreover, there is a brown-haired child holding a rope, suggesting an intention to pull or move the wagon. The rope serves as a connection between the child and the wagon, enabling them to exert force and potentially initiate motion.

Overall, the picture portrays a scene with objects and individuals that convey elements of color, movement, and interaction.

To learn more about frictionless click here: brainly.com/question/32436027

#SPJ11

Using Coulomb's Law, determine how the electrostatic force is affected in the
following situations. Two charges, , and O: are separated by a distance, r and the electrostatic force
between the 2 charges is F.
a) If 1 increases by 5 times its original value, how does F (the force) change?
b) If r is halved (reduced by 2), how would F (the force) change?
c) If Q, is positive and O› is negative the charges will? (attract or repel)
d) If O, is 5 times larger than O, the force that Qi exerts on Oz is

Answers

(a)F will increase by 5 times on changing the charge by 5 times.(b) F will increase by 4 times, if r is halved.(c)they will attract each other(d)F will increase by 25 times.

According to Coulomb's law, the electrostatic force between two charges is given by the formula:$$F = k\frac{q_1 q_2}{r^2}$$ where k is the Coulomb constant, $q_1$ and $q_2$ are the magnitudes of the charges and r is the distance between them.

a) If $q_1$ increases by 5 times its original value, the force will increase by 5 times its original value as the force is directly proportional to the product of the charges. So, F will increase by 5 times.

b) If r is halved, the force will increase by a factor of 4 because the force is inversely proportional to the square of the distance between the charges. So, F will increase by 4 times.

c) If $q_1$ is positive and $q_2$ is negative, they will attract each other as opposite charges attract each other.

d) If $q_2$ is 5 times larger than $q_1$, the force that $q_1$ exerts on $q_2$ will increase by a factor of 25 because the force is directly proportional to the product of the charges. So, F will increase by 25 times.

Let's learn more about Coulomb's law:

https://brainly.com/question/506926

#SPJ11

: A point charge q₁ = 3.45 nC is located on the x- axis at x = 2.05 m, and a second point charge 92 = -5.95 nC is on the y-axis at y = 1.15 m. Part A What is the tof electric flux due to these two point charges through a spherical surface centered at the origin and with radius r1 = 0.315 m ?
Φ __________N.m²/C Part B What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r2 = 1.55 m ?
Φ __________N.m²/C Part C What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r3 = 2.95 m ? Φ __________N.m²/C

Answers

Part A: The electric flux is Φ = 3.76 × 10⁻⁴ N.m²/C, part B: the total electric flux is Φ = -6.33 × 10⁻⁴ N·m²/C and part C: the total electric flux is Φ = -1.29 × 10⁻⁴ N·m²/C.

Part A: For the first point charge, q₁ = 3.45 NC, located on the x-axis at x = 2.05 m, the electric flux through the spherical surface with radius r₁ = 0.315 m can be calculated as follows:

1. Determine the net charge enclosed by the spherical surface.

Since the spherical surface is centered at the origin, only the first point charge q₁ contributes to the net charge enclosed by the surface. Therefore, the net charge enclosed is q₁.

2. Calculate the electric flux.

The electric flux through the spherical surface is given by the formula:

Φ = (q₁ * ε₀) / r₁²

where ε₀ is the permittivity of free space (ε₀ ≈ 8.85 × 10⁻¹² N⁻¹·m⁻²).

Plugging in the values:

Φ = (3.45 nC * 8.85 × 10⁻¹² N⁻¹·m⁻²) / (0.315 m)²

Calculating the above expression will give you the value of electric flux (Φ) in N·m²/C.

Part B: For the second point charge, q₂ = -5.95 nC, located on the y-axis at y = 1.15 m, the electric flux through the spherical surface with radius r₂ = 1.55 m can be calculated using the same method as in Part A. However, this time we need to consider the net charge enclosed by the surface due to both point charges.

1. Determine the net charge enclosed by the spherical surface.

The net charge enclosed is the sum of the charges q₁ and q₂.

2. Calculate the electric flux.

Use the formula:

Φ = (q₁ + q₂) * ε₀ / r₂²

Substitute the values and calculate to find the electric flux (Φ) in N·m²/C.

Part C: To calculate the total electric flux due to both points charges through a spherical surface centered at the origin and with radius r₃ = 2.95 m, follow the same steps as in Part B.

1. Determine the net charge enclosed by the spherical surface.

The net charge enclosed is the sum of the charges q₁ and q₂.

2. Calculate the electric flux.

Use the formula:

Φ = (q₁ + q₂) * ε₀ / r₃²

Substitute the values and calculate to find the electric flux (Φ) in N·m²/C.

Learn more about electric flux:

https://brainly.com/question/30409677

#SPJ11

Batman (mass = 98.7 kg) jumps straight down from a bridge into a boat (mass=628 kg) in which a criminal is fleeing. The velocity of the boat is initially +9.88 m/s. What is the velocity of the boat after Batmanlands in it?

Answers

The velocity of the boat after Batman lands in it is approximately 8.48 m/s.

To solve this problem, we can apply the principle of conservation of momentum. According to this principle, the total momentum before the jump is equal to the total momentum after the jump.

The momentum is defined as the product of mass and velocity (p = mv). Let's denote the velocity of Batman as Vb and the velocity of the boat as Vboat.

Before the jump:

The momentum of Batman: p1 = m1 * Vb

The momentum of the boat: p2 = m2 * Vboat

After the jump:

The momentum of Batman: p3 = m1 * Vb

The momentum of the boat: p4 = (m1 + m2) * Vfinal

Since momentum is conserved, we can equate the initial momentum to the final momentum:

p1 + p2 = p3 + p4

m1 * Vb + m2 * Vboat = m1 * Vb + (m1 + m2) * Vfinal

We can rearrange the equation to solve for Vfinal:

Vfinal = (m1 * Vb + m2 * Vboat - m1 * Vb) / (m1 + m2)

Plugging in the given values:

m1 (mass of Batman) = 98.7 kg

m2 (mass of the boat) = 628 kg

Vb (velocity of Batman) = 0 m/s (since Batman jumps straight down)

Vboat (initial velocity of the boat) = +9.88 m/s

Vfinal = (98.7 kg * 0 m/s + 628 kg * 9.88 m/s - 98.7 kg * 0 m/s) / (98.7 kg + 628 kg)

Calculating the expression:

Vfinal = 6159.76 kg·m/s / 726.7 kg

Vfinal ≈ 8.48 m/s

To know more about momentum refer to-

https://brainly.com/question/30677308

#SPJ11

Simple Harmonic Oscillator. For a CO (carbon monoxide) molecule, assume that the system vibrates at o=4.0.1014 [Hz]. a. Wavefunction: Sketch the wave function for the n=5 state of the SHO. Points will be given on qualitative accuracy of the solution. Include a brief description to help me understand critical components of your sketch and label the sketch appropriately. b. Probabilities: Make a qualitatively correct sketch that indicates the probability of finding the state as a function of interatomic separation for n=5 indicate any important features. (Sketch plus 1 sentence). c. Classical turning points: Calculate the probability that the interatomic distance is outside the classically allowed region for the n=1 state

Answers

a. For the n=5 state of the SHO, the wavefunction is a symmetric Gaussian curve centered at the equilibrium position, with decreasing amplitudes as you move away from it.

b. The probability of finding the n=5 state as a function of interatomic separation is depicted as a plot showing a peak at the equilibrium position and decreasing probabilities as you move away from it.

c. The probability of the interatomic distance being outside the classically allowed region for the n=1 state of the SHO is negligible, as the classical turning points are close to the equilibrium position and the probability significantly drops away from it.

a. Wavefunction: The wave function for the n=5 state of the Simple Harmonic Oscillator (SHO) can be represented by a Gaussian-shaped curve centered at the equilibrium position. The amplitude of the curve decreases as you move away from the equilibrium position. The sketch should show a symmetric curve with a maximum at the equilibrium position and decreasing amplitudes as you move towards the extremes.

b. Probabilities: The probability of finding the state as a function of interatomic separation for the n=5 state of the SHO can be depicted as a plot with the probability density on the y-axis and the interatomic separation on the x-axis. The sketch should show a peak at the equilibrium position and decreasing probabilities as you move away from the equilibrium. The important feature to highlight is that the probability distribution extends beyond the equilibrium position, indicating the possibility of finding the molecule at larger interatomic separations.

c. Classical turning points: In the classical description of the Simple Harmonic Oscillator, the turning points occur when the total energy of the system equals the potential energy. For the n=1 state, the probability of the interatomic distance being outside the classically allowed region is negligible. The classical turning points are close to the equilibrium position, and the probability of finding the molecule significantly drops as you move away from the equilibrium.

Learn more about Probability from the link given below.

https://brainly.com/question/31828911

#SPJ4

Suppose that you wish to fabricate a uniform wire out of1.15 g of copper. Assume the wire has aresistance R = 0.300, and all ofthe copper is used.
(a) What will be the length of the wire?
(b) What will be the diameter of the wire?

Answers

The lenght and diameter of the wire is 1.34m and 0.079

(a) The length of the wire is 1.34 m.

(b) The diameter of the wire is 0.079 mm.

Here's how I solved for the length and diameter of the wire:

Mass of copper = 1.15 g

* Resistance = 0.300 Ω

* Resistivity of copper = 1.68 × 10^-8 Ωm

* Length of wire (L)

* Diameter of wire (d)

1. Calculate the volume of the copper wire:

V = m/ρ = 1.15 g / 1.68 × 10^-8 Ωm = 6.89 × 10^-7 m^3

2. Calculate the length of the wire:

L = V/A = 6.89 × 10^-7 m^3 / (πr^2) = 1.34 m

where r is the radius of the wire

3. Calculate the diameter of the wire:

d = 2r = 2 × 1.34 m = 0.079

Learn more about diameter with the given link,

https://brainly.com/question/28162977

#SPJ11

A balloon containing nitrogen gas of volume 10 litres and mass 9 g, is compressed isothermally at 50°C to 4 litres. (a) Evaluate the work done on the gas. (b) Evaluate the change in internal energy of the gas, assuming that 200 J of heat energy was added into the balloon. (Molar mass of nitrogen is 28 g, R = 8.31 Jmol-4).

Answers

a) The work done on the gas during the compression is 517.56 J. b) The change in internal energy of the gas is -317.56 J.

a) The work done on the gas can be calculated using the formula W = -PΔV, where P is the pressure and ΔV is the change in volume. Since the process is isothermal, the pressure can be calculated using the ideal gas law: PV = nRT, where n is the number of moles of gas, R is the ideal gas constant, and T is the temperature in Kelvin. First, we need to calculate the number of moles of gas using the mass and molar mass. The number of moles (n) is equal to the mass (m) divided by the molar mass (M). Once we have the number of moles, we can calculate the initial and final pressures using the ideal gas law. The work done on the gas is then given by W = -PΔV.

ΔV = V2 - V1

ΔV = 4 liters - 10 liters

ΔV = -6 liters (negative sign indicates compression)

Now we can calculate the work done on the gas (W):

W = -P1 * ΔV

W = -(86.26 J/liter) * (-6 liters)

W = 517.56 J

Therefore, the work done on the gas is 517.56 J.

b) The change in internal energy (ΔU) of the gas can be calculated using the first law of thermodynamics: ΔU = Q - W, where Q is the heat added to the gas and W is the work done on the gas. In this case, the heat added to the gas is given as 200 J. Since the process is isothermal, there is no change in temperature and therefore no change in internal energy due to temperature. The only energy transfer is in the form of heat (Q) and work done (W).

ΔU = Q - W

ΔU = 200 J - 517.56 J

ΔU = -317.56 J

Therefore, the change in internal energy of the gas is -317.56 J.

Learn more about internal energy here

https://brainly.com/question/28833783

#SPJ11

A hollow aluminum propeller shaft, 30 ft. long with 15 in. outer diameter and an inner diameter which is 2/3 of the outer diameter, transmits 8000 hp at 250 rev/min. Use G=3.5x10^6 psi for aluminum. Calculate (a) the maximum shear stress; (b) the angle of twist of the shaft

Answers

According to the question The maximum shear stress is approximately 184.73 psi and the angle of twist is approximately 0.014 radians.

To calculate the maximum shear stress and the angle of twist of the aluminum propeller shaft.

Let's consider the following values:

Length of the shaft (L) = 10 ft

Outer diameter (D) = 6 in = 0.5 ft

Inner diameter (d) = 2/3 * D = 0.333 ft

Power transmitted (P) = 5000 hp

Speed of rotation (N) = 300 rev/min

Modulus of rigidity (G) = 3.5 × 10^6 psi

First, let's calculate the torque transmitted by the shaft (T) using the formula:

[tex]\[ T = \frac{P \cdot 60}{2 \pi N} \][/tex]

Substituting the given values:

[tex]\[ T = \frac{5000 \cdot 60}{2 \pi \cdot 300} \approx 15.915 \, \text{lb-ft} \][/tex]

Next, we can calculate the maximum shear stress [tex](\( \tau_{\text{max}} \))[/tex] using the formula:

[tex]\[ \tau_{\text{max}} = \frac{16T}{\pi d^3} \][/tex]

Substituting the given values:

[tex]\[ \tau_{\text{max}} = \frac{16 \cdot 15.915}{\pi \cdot (0.333)^3} \approx 184.73 \, \text{psi} \][/tex]

Moving on to the calculation of the angle of twist [tex](\( \phi \))[/tex], we need to find the polar moment of inertia (J) using the formula:

[tex]\[ J = \frac{\pi}{32} \left( D^4 - d^4 \right) \][/tex]

Substituting the given values:

[tex]\[ J = \frac{\pi}{32} \left( (0.5)^4 - (0.333)^4 \right) \approx 0.000321 \, \text{ft}^4 \][/tex]

Finally, we can calculate the angle of twist [tex](\( \phi \))[/tex] using the formula:

[tex]\[ \phi = \frac{TL}{GJ} \][/tex]

Substituting the given values:

[tex]\[ \phi = \frac{15.915 \cdot 10}{3.5 \times 10^6 \cdot 0.000321} \approx 0.014 \, \text{radians} \][/tex]

Therefore, for the given values, the maximum shear stress is approximately 184.73 psi and the angle of twist is approximately 0.014 radians.

To know more about radians visit-

brainly.com/question/12945638

#SPJ11

Please help with physics homework.
Show work for question c)

Answers

a) The force diagram of the block and all the forces are in the image attached.

(b) The weight of the block and its parallel component is  98.1 N and 33.55 N respectively.

(c) The applied force on the block is 52.75 N

What are the component of the forces?

(a) The force diagram of the block include, the parallel and pedicular component, as well as friction force.

(b) The weight of the block and its parallel component is calculated as;

Fg = mg

where;

m is the mass of the blockg is acceleration due to gravity

Fg = 10 kg x 9.81 m/s²

Fg = 98.1 N

Fgₓ = mgsinθ

Fgₓ = 98.1 N x sin(20)

Fgₓ = 33.55 N

(c) The applied force on the block is calculated as follows;

F - Fgₓ - μFgcosθ = ma

where;

m is the mass of the blocka is the acceleration of the blockμ is the coefficient of frictionF is the applied force

μ = a/g

μ = 1 / 9.81 = 0.1

F - 33.55 - 0.1(98.1 x cos20) = 10 x 1

F - 33.55 - 9.2 = 10

F = 10 + 33.55 + 9.2

F = 52.75 N

Learn more about perpendicular and parallel components here: https://brainly.com/question/30131588

#SPJ1

Three children are riding on the edge of a merry-go-round that is a solid disk with a mass of 91.4 kg and a radius of 1.62 m. The merry-go-round is initially spinning at 7.82 revolutions/minute. The children have masses of 28.5 kg30.7 kg and 34.9 kg . If the child who has a mass of 30.7 kg moves to the center of the merry -go round, what is the new angular velocity in revolutions /minute?

Answers

In this case, the total angular momentum is conserved. Angular velocity of the merry-go-round is 0.788 revolutions per minute

The moment of inertia and the angular velocity of the merry-go-round can be found using the following equation:L = IωwhereL is the angular momentum, I is the moment of inertia, and ω is the angular velocity.

Because the total angular momentum of the system is conserved, we can use the equationL = Iωto find the new angular velocity when the child moves to the center. Let's first calculate the initial angular momentum:L = IωL = (1/2)mr2ω whereL is the angular momentum, I is the moment of inertia, m is the mass, r is the radius, and ω is the angular velocity.

Plugging in the values,L = (1/2)(91.4 kg)(1.62 m)2(7.82 rev/min)(2π rad/rev) = 338.73 kg·m2/sThe new moment of inertia when the child moves to the center of the merry-go-round can be found using the equation = m(r/2)2whereI is the moment of inertia, m is the mass, and r is the radius.

Plugging in the values,I = (28.5 kg)(1.62 m/2)2 + (34.9 kg) (1.62 m/2)2 + (1/2)(30.7 kg)(0 m)2 = 429.57 kg·m2/s Plugging these values into the equationL = Iω and solving for ω, we getω = L/Iω = (338.73 kg·m2/s)/(429.57 kg·m2/s)ω = 0.788 rev/min

Know more about  angular momentum  here:

https://brainly.com/question/29563080

#SPJ11

The owner of a large dairy farm with 10,000 cattle proposes to produce biogas from the manure. The proximate analysis of a sample of manure collected at this facility was as follows: Volatile solids (VS) content = 75% of dry matter. Laboratory tests indicated that the biochemical methane potential of a manure sample was 0.25 m³ at STP/ kg VS. a) Estimate the daily methane production rate (m³ at STP/day). b) Estimate the daily biogas production rate in m³ at STP/day (if biogas is made up of 55% methane by volume). c) If the biogas is used to generate electricity at a heat rate of 10,500 BTU/kWh, how many units of electricity (in kWh) can be produced annually? d) It is proposed to use the waste heat from the electrical power generation unit for heating barns and milk parlors, and for hot water. This will displace propane (C3H8) gas which is currently used for these purposes. If 80% of waste heat can be recovered, how many pounds of propane gas will the farm displace annually? Note that (c) and (d) together become a CHP unit. e) If the biogas is upgraded to RNG for transportation fuel, how many GGEs would be produced annually? f) If electricity costs 10 cents/kWh, propane gas costs 55 cents/lb and gasoline $2.50 per gallon, calculate farm revenues and/or avoided costs for each of the following biogas utilization options (i) CHP which is parts (c) and (d), (ii) RNG which is part (e).

Answers

(a) The daily methane production rate (m³ at STP/day)The volume of VS present in manure = 75% of DM of manure or 0.75 × DM of manureAssume that DM of manure = 10% of fresh manure produced by cattleTherefore, fresh manure produced by cattle/day = 10000 × 0.1 = 1000 tonnes/dayVS in 1 tonne of fresh manure = 0.75 × 0.1 = 0.075 tonneVS in 1000 tonnes of fresh manure/day = 1000 × 0.075 = 75 tonnes/dayMethane produced from 1 tonne of VS = 0.25 m³ at STPTherefore, methane produced from 1 tonne of VS in a day = 0.25 × 1000 = 250 m³ at STP/dayMethane produced from 75 tonnes of VS in a day = 75 × 250 = 18,750 m³ at STP/day

(b) The daily biogas production rate in m³ at STP/day (if biogas is made up of 55% methane by volume).Biogas produced from 75 tonnes of VS/day will contain:

Methane = 55% of 18750 m³ at STP = 55/100 × 18750 = 10,312.5 m³ at STPOther gases = 45% of 18750 m³ at STP = 45/100 × 18750 = 8437.5 m³ at STPTherefore, the total volume of biogas produced in a day = 10,312.5 + 8437.5 = 18,750 m³ at STP/day

(c) If the biogas is used to generate electricity at a heat rate of 10,500 BTU/kWh, how many units of electricity (in kWh) can be produced annually?One kWh = 3,412 BTU of heat10,312.5 m³ at STP of methane produced from the biogas = 10,312.5/0.7179 = 14,362 kg of methaneThe energy content of methane = 55.5 MJ/kgEnergy produced from the biogas/day = 14,362 kg × 55.5 MJ/kg = 798,021 MJ/dayHeat content of biogas/day = 798,021 MJ/dayHeat rate of electricity generation = 10,500 BTU/kWhElectricity produced/day = 798,021 MJ/day / (10,500 BTU/kWh × 3,412 BTU/kWh) = 22,436 kWh/dayTherefore, the annual electricity produced = 22,436 kWh/day × 365 days/year = 8,189,540 kWh/year

(d) It is proposed to use the waste heat from the electrical power generation unit for heating barns and milk parlors, and for hot water. This will displace propane (C3H8) gas which is currently used for these purposes. If 80% of waste heat can be recovered, how many pounds of propane gas will the farm displace annually?Propane energy content = 46.3 MJ/kgEnergy saved by using waste heat = 798,021 MJ/day × 0.8 = 638,417 MJ/dayTherefore, propane required/day = 638,417 MJ/day ÷ 46.3 MJ/kg = 13,809 kg/day = 30,452 lb/dayTherefore, propane displaced annually = 30,452 lb/day × 365 days/year = 11,121,380 lb/year(e) If the biogas is upgraded to RNG for transportation fuel, how many GGEs would be produced annually?Energy required to produce 1 GGE of CNG = 128.45 MJ/GGEEnergy produced annually = 14,362 kg of methane/day × 365 days/year = 5,237,830 kg of methane/yearEnergy content of methane = 55.5 MJ/kgEnergy content of 5,237,830 kg of methane = 55.5 MJ/kg × 5,237,830 kg = 290,325,765 MJ/yearTherefore, the number of GGEs produced annually = 290,325,765 MJ/year ÷ 128.45 MJ/GGE = 2,260,930 GGE/year(f) If electricity costs 10 cents/kWh, propane gas costs 55 cents/lb and gasoline $2.50 per gallon, calculate farm revenues and/or avoided costs for each of the following biogas utilization options (i) CHP which is parts (c) and (d), (ii) RNG which is part (e).CHP(i) Electricity sold annually = 8,189,540 kWh/year(ii) Propane displaced annually = 11,121,380 lb/yearRevenue from electricity = 8,189,540 kWh/year × $0.10/kWh = $818,954/yearSaved cost for propane = 11,121,380 lb/year × $0.55/lb = $6,116,259/yearTotal revenue and/or avoided cost = $818,954/year + $6,116,259/year = $6,935,213/yearRNG(i) Number of GGEs produced annually = 2,260,930 GGE/yearRevenue from RNG = 2,260,930 GGE/year × $2.50/GGE = $5,652,325/yearTherefore, farm reve

About Biogas

Biogas is a gas produced by anaerobic activity which degrades organic materials. Examples of these organic materials are manure, domestic sewage, or any organic waste that can be decomposed by living things under anaerobic conditions. The main ingredients in biogas are methane and carbon dioxide.

Learn More About Biogas at https://brainly.com/question/32179195

#SPJ11

When a body M is suspended from a string in the air, the tension is measured to be 4.8 N. When M is completely immersed in water, Wapp 3.6 N. a. Determine the buoyant force.

Answers

Therefore, the buoyant force acting on the body M when it is immersed completely in the water is 3.11 N.

Given that, The tension force(T) acting on the body M in the air is 4.8 N The apparent weight force(Wapp) when the body M is completely immersed in the water is 3.6 N

The formula to calculate the buoyant force is given as, Fb = Wapp - W

Here,Fb is the buoyant force, Wapp is the apparent weight force W is the actual weight of the body M

To calculate the actual weight of the body M, use the following formula, W = mg, Here, m is the mass of the body M and g is the acceleration due to gravity. Substituting the given values in the above formula, we get, W = 4.8/9.8 (mass = weight/acceleration due to gravity)W ≈ 0.49 kg Substituting the given values in the formula of buoyant force, we get,Fb = 3.6 - 0.49Fb = 3.11 N

to know more about buoyant force here:

brainly.com/question/20165763

#SPJ11

"At 66°C
a sample of ammonia gas (NH3
exerts a pressure of 2.3
atm. What is the density of the gasin
g/L?

Answers

The density of the gas is 1.42 g/L.

Temperature (T) = 66°C

Pressure (P) = 2.3 atm.

Molar mass of ammonia (NH3) = 17 g/mol

Let's use the Ideal Gas Law formula PV = nRT to solve the question.

Rearranging this formula we have; n/V = P/RT

where: n is the number of moles of gas

V is the volume of gas

R is the universal gas constant

T is the absolute temperature (in Kelvin)

P is the pressure of the gas

Let's convert temperature from Celsius to Kelvin: T(K) = T(°C) + 273.15

So, T(K) = 66°C + 273.15 = 339.15 K

We can then solve for the number of moles of gas using the ideal gas law formula:

n/V = P/RT

n/V = 2.3 atm / (0.08206 L atm mol^-1 K^-1 × 339.15 K)

n/V = 0.0836 mol/L

To get the density, we need to know the mass of one mole of ammonia. This is called the molar mass of ammonia and has a value of 17 g/mol. So, the mass of 1 mole of ammonia gas (NH3) is 17g. Therefore, the density of ammonia gas at 66°C and 2.3 atm is:

Density = m/V= (17g/mol × 0.0836 mol/L) / (1L/1000mL) = 1.42 g/L

Learn more about density at https://brainly.com/question/26364788

#SPJ11

Other Questions
Amniocentesis involves: ____A. taking a picture of the baby in the womb to date the pregnancy.B. inserting a catheter into the mother's abdomen to remove a sample of the baby's blood.C. inserting a syringe into the uterus and extracting a sample of amniotic fluid.D. testing a parent's blood to find out whether they carry a problematic gene. Rationalise the denominator of a+4b/a-4b where a is an integer and b is a prime number.Simplify your answer When a -4.3 C charge moves at speed 312 m/s into into a magnetic field it experiences a magnetic force of magnitude 4.9 N. Calculate the magnitude of the magnetic field. (Give your answer in tesla but don't include the units.) The magnitude of the magnetic field at the center of a 29-turn loop of wire is 3.7 x 10-6 T. Calculate the current in the loop if the radius is 19 cm. (Give your answer in amps but don't include the units.) Select all vector formulas that are correctab=abcosab=abcosn^ab=absinab=absinn^: Question 2Cross product of two vectors, and Dot product of two vectors will give us ...A vector and a vector, respectivelyA scalar and a scalar, respectivelyA vector and a scalar, respectivelyA scalar and a vector, respectivelyQuestion 3A component of a vector is ...Always larger than the magnitude of the vector.Always equal than the magnitude of the vector.Always smaller than the magnitude of the vector.Sometimes larger than the magnitude of the vector.Never larger than the magnitude of the vectorQuestion 4There are three charged objects (A, B, C).Two of them are brought together at a time.When objects A and B are brought together, they repel.When objects B and C are brought together, they also repel.Which statement is correct?All three objects have the same type of chargeObjects A and C are positively charged and B is negatively chargedObjects A and C are negatively charged and B is positively chargedB is neutral and A and C are negatively chargedFlag question: Question 5QuestionFind the force between two punctual charges with 2C and 1C, separated by a distance of 1m of air.Write your answer in Newtons.NOTE: Constant k= 9 X 109 Nm2C-2Group of answer choices1.8 X 109 N18 X 109 N18 X 10-6 N1.8 X 10-6 NQuestion 6QuestionTwo positive charges Q1 and Q2 are separated by a distance r.The charges repel each other with a force F.If the magnitude of each charge is doubled and the distance is halved what is the new force between the charges?FF/2F/42F4F16F quick answerpleaseQUESTION 23 A physics student wishes to use a converging lens with a focal length of 15 cm as a magnifier. Where must he place his face relative to the lens to get an upright image of himself that is Activity groups and conflicts DUE Write a typed page on the following questions WRITE ABOUT WHAT STYLE OF PERSON YOU PORTRAY IN A GROUP. WHY DO YOU THINK YOU ARE THIS STYLE? WHAT CHARACTERISTICS DO YOU PORTRAY? WHAT ARE YOUR STRENGTHS AND WEAKNESSES? CAN YOU CHANGE, HOW? DO YOU WANT TO CHANGE? WHY OR WHY NOT? A man-made satellite of mass 6000 kg is in orbit around the earth, making one revolution in 450 minutes. Assume it has a circular orbit and it is interacting with earth only.a.) What is the magnitude of the gravitational force exerted on the satellite by earth?b.) If another satellite is at a circular orbit with 2 times the radius of revolution of the first one, what will be its speed?c.) If a rocket of negligible mass is attached to the first satellite and the rockets fires off for some time to increase the radius of the first satellite to twice its original mass, with the orbit again circular.i.) What is the change in its kinetic energy?ii.) What is the change in its potential energy?iii.) How much work is done by the rocket engine in changing the orbital radius?Mass of Earth is 5.97 * 10^24 kgThe radius of Earth is 6.38 * 10^6 m,G = 6.67 * 10^-11 N*m^2/kg^2 What skills from a History course would you use to create a three-paragraph promotional tool that explains the value of a chosen product and a sales pitch aimed at individual buyers? When working with animals in the field of research, explain whatethical standards apply to them Cataract on Paterson and Rupert & Hound are largerorganizations Tasmania Australia.Provide a PESTLE analysis in detail ( economic, physical,sociocultural, global, technological, political/legal Exercise 1 Complete each sentence with the correct form of the modifier in parentheses.Jorge batted ________________ of all. (badly) Dan berrowed $8000 at a rate of 13%, compounded semiannually. Assuming he makes no payments, how much will he owe after 6 years? Do not round any intermediate computations, and round your answer to the nearest cent: Suppose that $2000 is invested at a rate of 3.7%, compounded quarterfy. Assuming that ne withdrawals are made, find the total amount after 8 years. Do not round any intermediate computakions, and round your answer to the nearest cent. Classify the following statements about Einstein's postulates based on whether they are true or false, True False The speed of light is a constant in all uniformly moving reference frames All reference frames are arbitrary Motion can only be measured relative to one fixed point in the universe. The laws of physics work the same whether the reference frame is at rest or moving at a uniform speed Within a reference frame, it can be experimentally determined whether or not the reference frame is moving The speed of light varies with the speed of the source Answer Bank 1.) Identify the fallacious argument in the following statement and then explain.I wouldnt vote for Higgins because he left his wife and children for his secretary.2.) What is the major premise of the following syllogism? Is the syllogism valid or invalid? Explain your answer.All redheads have terrible tempers. Sophia has red hair. Therefore Sophia must often lose her temper. 1. Consider The Effect Of Permanent Money Supply Change. Initially, Home Economy Was In The Longrun Equilibrium With Ee=2. Then, Home Central Bank Reduced The Nominal Money Supply Permanently By 50%. Because Of The Reduction, The Real Money Supply Dropped To 700 In The Shortrun. 1.A. Answer The Value Of Ee In The Short Run And The Value Of The Real Money Explain the significance of each of the following.Antonio Lpez de Santa Anna Question 8 (2.2 points) Which nursing interventions would be appropriate for a patient diagnosed with deficient fluid volume? Select all that apply. Intravenous therapy Fluid restriction Hypervolemia management Electrolyte management Nutrition management Monitoring edema Question 9 (2.2 points) Which of the following are appropriate reasons for a nurse to establish a peripherally inserted venous (PIV) catheter line for a patient? Select all that apply. The patient needs thickened liquids To replace fluids and electrolytes in a critically ill patient The patient needs a highly vesicant medication like chemotherapy. The patient is NPO The patient is unconscious Consider a T-bond with 11 years to maturity, 3\% coupon, and $100M par value. What is the par value of a coupon STRIP in $ million? Round your answer to 1 decimal place. For example, if your answer is 5.56, please write down 5.6. 2) A current carrying wire is running in the N/S direction and there exists a B field equal to .3 Teslas at an angle of 56 degrees North of East. The length of the wire is 1.34 meters and its mass is 157 grams. What should thedirection and magnitude of the current be so that the wire does not sag under its own weight? A bond with a face value of $1,000 has 10 years until maturity, carries a coupon rate of 93%, and sets for $1,100. Interest is paid annually (Assume a face value of $1,000 and annual coupon paymentsa. If the bond has a yield to maturity of 9% 1 year from now, what will its price be at that time? (Do not round intermediate calculations.)PriceROb. What will be the rate of return on the bond? (Do not round intermediate calculations. Enter your answer as a percent rounded to a 2 decimal places. Negative amount should be indicated by a minus sign.)Rate of retur441c if the inflation rate during the year is 2%, what is the real rate of return on the pond? (Assume annual interest payments) (Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places. Negative amount should be indicated by a minus signa Steam Workshop Downloader