(c). Compute the directional derivative of ϕ(x,y,z)=e 2x cosyz, in the direction of the vector r ​ (t)=(asint) i ​ +(acost) j ​ +(at) k ​ at t= π/4 ​ where a is constant.

Answers

Answer 1

The directional derivative of ϕ(x, y, z) in the direction of the vector r(t) is a/√2 [2e^(2x)cos(yz)sin(t) - e^(2x)zsin(yz)cos(t) + (π/4)e^(2x)ysin(yz)].

Here, a is a constant such that t = π/4. Hence, r(t) = (asint)i + (acost)j + (a(π/4))k = (asint)i + (acost)j + (a(π/4))k

The directional derivative of ϕ(x, y, z) in the direction of r(t) is given by Dϕ(x, y, z)/|r'(t)|

where |r'(t)| = √(a^2cos^2t + a^2sin^2t + a^2) = √(2a^2).∴ |r'(t)| = a√2

The partial derivatives of ϕ(x, y, z) are:

∂ϕ/∂x = 2e^(2x)cos(yz)∂

ϕ/∂y = -e^(2x)zsin(yz)

∂ϕ/∂z = -e^(2x)ysin(yz)

Thus,∇ϕ(x, y, z) = (2e^(2x)cos(yz))i - (e^(2x)zsin(yz))j - (e^(2x)ysin(yz))k

The directional derivative of ϕ(x, y, z) in the direction of r(t) is given by

Dϕ(x, y, z)/|r'(t)| = ∇ϕ(x, y, z) · r'(t)/|r'(t)|∴

Dϕ(x, y, z)/|r'(t)| = (2e^(2x)cos(yz))asint - (e^(2x)zsin(yz))acost + (e^(2x)ysin(yz))(π/4)k/a√2 = a/√2 [2e^(2x)cos(yz)sin(t) - e^(2x)zsin(yz)cos(t) + (π/4)e^(2x)ysin(yz)]

Hence, the required answer is a/√2 [2e^(2x)cos(yz)sin(t) - e^(2x)zsin(yz)cos(t) + (π/4)e^(2x)ysin(yz)].

Learn more about derivative at

https://brainly.com/question/31397818

#SPJ11


Related Questions

A study published in 2008 in the American Journal of Health Promotion (Volume 22, Issue 6) by researchers at the University of Minnesota (U of M) found that 124 out of 1,923 U of M females had over $6,000 in credit card debt while 61 out of 1,236 males had over $6,000 in credit card debt.


10. Verify that the sample size is large enough in each group to use the normal distribution to construct a confidence interval for a difference in two proportions.


11. Construct a 95% confidence interval for the difference between the proportions of female and male University of Minnesota students who have more than $6,000 in credit card debt (pf - pm). Round your sample proportions and margin of error to four decimal places.


12. Test, at the 5% level, if there is evidence that the proportion of female students at U of M with more that $6,000 credit card debt is greater than the proportion of males at U of M with more than $6,000 credit card debt. Include all details of the test

Answers

To determine if the sample size is large enough to use the normal distribution for constructing a confidence interval for the difference in two proportions, we need to check if the conditions for using the normal approximation are satisfied.

The conditions are as follows:

The samples are independent.

The number of successes and failures in each group is at least 10.

In this case, the sample sizes are 1,923 for females and 1,236 for males. Both sample sizes are larger than 10, so the second condition is satisfied. Since the samples are independent, the sample sizes are large enough to use the normal distribution for constructing a confidence interval.

To construct a 95% confidence interval for the difference between the proportions of females and males with more than $6,000 in credit card debt (pf - pm), we can use the formula:

CI = (pf - pm) ± Z * sqrt((pf(1-pf)/nf) + (pm(1-pm)/nm))

Where:

pf is the sample proportion of females with more than $6,000 in credit card debt,

pm is the sample proportion of males with more than $6,000 in credit card debt,

nf is the sample size of females,

nm is the sample size of males,

Z is the critical value for a 95% confidence level (which corresponds to approximately 1.96).

Using the given data, we can calculate the sample proportions:

pf = 124 / 1923 ≈ 0.0644

pm = 61 / 1236 ≈ 0.0494

Substituting the values into the formula, we can calculate the confidence interval for the difference between the proportions.

To test if there is evidence that the proportion of female students with more than $6,000 in credit card debt is greater than the proportion of male students with more than $6,000 in credit card debt, we can perform a hypothesis test.

Null hypothesis (H0): pf - pm ≤ 0

Alternative hypothesis (H1): pf - pm > 0

We will use a one-tailed test at the 5% significance level.

Under the null hypothesis, the difference between the proportions follows a normal distribution. We can calculate the test statistic:

z = (pf - pm) / sqrt((pf(1-pf)/nf) + (pm(1-pm)/nm))

Using the given data, we can calculate the test statistic and compare it to the critical value for a one-tailed test at the 5% significance level. If the test statistic is greater than the critical value, we reject the null hypothesis and conclude that there is evidence that the proportion of female students with more than $6,000 in credit card debt is greater than the proportion of male students with more than $6,000 in credit card debt.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11

Solve 3x=11 o x=ln11−ln3
o x=ln3−ln11
o x=ln11/ln3
o x=11/3

Answers

The correct solution to the equation 3x = 11 is x = ln11 - ln3.

To solve the equation 3x = 11, we can use logarithmic properties to isolate the variable x. Taking the natural logarithm (ln) of both sides, we have ln(3x) = ln(11). Using the logarithmic rule for the product of terms, we can rewrite ln(3x) as ln(3) + ln(x).

Therefore, the equation becomes ln(3) + ln(x) = ln(11). Rearranging the terms, we have ln(x) = ln(11) - ln(3). By the logarithmic property of subtraction, we can combine the logarithms, resulting in ln(x) = ln(11/3). Finally, exponentiating both sides with base e, we find x = ln(11/3).

learn more about "logarithmic ":- https://brainly.com/question/25710806

#SPJ11

AB 8a 12b
=
SEE
8a 12b
ABCD is a quadrilateral.
A
a) Express AD in terms of a and/or b. Fully simplify your answer.
b) What type of quadrilateral is ABCD?
B
BC= 2a + 16b
D
2a + 16b
9a-4b
C
DC = 9a-4b
Not drawn accurately
Rectangle
Rhombus
Square
Trapezium
Parallelogram

Answers

AD in terms of a and/or b is 8a - 126.

a) To find AD in terms of a and/or b, we need to consider the properties of quadrilaterals. In a quadrilateral, opposite sides are equal in length.

Given:

AB = 8a - 126

DC = 9a - 4b

Since AB is opposite to DC, we can equate them:

AB = DC

8a - 126 = 9a - 4b

To isolate b, we can move the terms involving b to one side of the equation:

4b = 9a - 8a + 126

4b = a + 126

b = (a + 126)/4

Now that we have the value of b in terms of a, we can substitute it back into the expression for DC:

DC = 9a - 4b

DC = 9a - 4((a + 126)/4)

DC = 9a - (a + 126)

DC = 9a - a - 126

DC = 8a - 126

Thus, AD is equal to DC:

AD = 8a - 126

For more such questions on terms,click on

https://brainly.com/question/1387247

#SPJ8

The probable question may be:
ABCD is a quadrilateral.

AB = 8a - 126

BC = 2a+166

DC =9a-4b

a) Express AD in terms of a and/or b.

Which of these transformations satisfy T(v+w) = T(v) +T(w) and which satisfy T(cv) = cT (v)? (a) T(v) = v/||v|| (b) T(v) = v1+V2+V3 (c) T(v) = (v₁, 2v2, 3v3) (d) T(v) largest component of v. = Suppose a linear T transforms (1, 1) to (2, 2) and (2,0) to (0,0). Find T(v): (a) v = (2, 2) (b) V= = (3,1) (c) v = (-1, 1) (d) V= = (a, b)

Answers

To determine which of the given transformations satisfy T(v+w) = T(v) + T(w) and T(cv) = cT(v), we can evaluate each transformation using the given conditions.

(a) T(v) = v/||v||

Let's test if it satisfies the conditions:

T(v + w) = (v + w) / ||v + w|| = v/||v|| + w/||w|| = T(v) + T(w)

T(cv) = (cv) / ||cv|| = c(v/||v||) = cT(v)

Therefore, transformation T(v) = v/||v|| satisfies both conditions.

(b) T(v) = v1 + v2 + v3

Let's test if it satisfies the conditions:

T(v + w) = (v1 + w1) + (v2 + w2) + (v3 + w3) ≠ (v1 + v2 + v3) + (w1 + w2 + w3) = T(v) + T(w)

T(cv) = (cv1) + (cv2) + (cv3) ≠ c(v1 + v2 + v3) = cT(v)

Therefore, transformation T(v) = v1 + v2 + v3 does not satisfy the condition T(v+w) = T(v) + T(w), but it does satisfy T(cv) = cT(v).

(c) T(v) = (v₁, 2v₂, 3v₃)

Let's test if it satisfies the conditions:

T(v + w) = (v₁ + w₁, 2(v₂ + w₂), 3(v₃ + w₃)) ≠ (v₁, 2v₂, 3v₃) + (w₁, 2w₂, 3w₃) = T(v) + T(w)

T(cv) = (cv₁, 2cv₂, 3cv₃) ≠ c(v₁, 2v₂, 3v₃) = cT(v)

Therefore, transformation T(v) = (v₁, 2v₂, 3v₃) does not satisfy the condition T(v+w) = T(v) + T(w), but it does satisfy T(cv) = cT(v).

(d) T(v) largest component of v

Let's test if it satisfies the conditions:

T(v + w) = largest component of (v + w) ≠ largest component of v + largest component of w = T(v) + T(w)

T(cv) = largest component of (cv) ≠ c(largest component of v) = cT(v)

Therefore, transformation T(v) largest component of v does not satisfy either condition.

For the given linear transformation T:

(1, 1) → (2, 2)

(2, 0) → (0, 0)

We can determine the transformation matrix T(v) as follows:

T(v) = A * v

where A is the transformation matrix. To find A, we can set up a system of equations using the given transformation conditions:

A * (1, 1) = (2, 2)

A * (2, 0) = (0, 0)

Solving the system of equations, we find:

A = (1, 1)

(1, 1)

Therefore, T(v) = (1, 1) * v, where v is a vector.

(a) v = (2, 2):

T(v) = (1, 1) * (2, 2) = (4, 4)

(b) v = (3, 1):

T(v) = (1, 1) * (3, 1) = (4, 4)

(c) v = (-1, 1):

T(v) = (1, 1) * (-1, 1) = (0, 0)

(d) v = (a, b):

T(v) = (1, 1) * (a, b) = (a + b, a + b)

Learn more about satisfy here

https://brainly.com/question/29181218

#SPJ11

Falco Restaurant Supplies borrowed $15,000 at 3.25% compounded semiannually to purchase a new delivery truck. The loan agreement stipulates regular monthly payments of $646.23 be made over the next two years. Calculate the principal reduction in the first year. Do not show your work. Enter your final answer rounded to 2 decimals

Answers

To calculate the principal reduction in the first year, we need to consider the loan agreement, which states that regular monthly payments of $646.23 will be made over the next two years. Since the loan agreement specifies monthly payments, we can calculate the total amount of payments made in the first year by multiplying the monthly payment by 12 (months in a year). $646.23 * 12 = $7754.76

Therefore, in the first year, a total of $7754.76 will be paid towards the loan.

Now, to find the principal reduction in the first year, we need to subtract the interest paid in the first year from the total payments made. However, we don't have the specific interest amount for the first year.

Without the interest rate calculation, we can't determine the principal reduction in the first year. The interest rate given (3.25% compounded semiannually) is not enough to calculate the exact interest paid in the first year.

To calculate the interest paid in the first year, we need to know the compounding frequency and the interest calculation formula. With this information, we can determine the interest paid for each payment and subtract it from the payment amount to find the principal reduction.

Unfortunately, the question doesn't provide enough information to calculate the principal reduction in the first year accurately.

To know more about "Loan Agreement":

https://brainly.com/question/20813381

#SPJ11

The half-life of Palladium-100 is 4 days. After 24 days a sample of Palladium-100 has been reduced to a mass of 3mg. What was the initial mass (in mg) of the sample? What is the mass (in mg) 6 weeks after the start? You may enter the exact value or round to 4 decimal places.

Answers

The initial mass of the Palladium-100 sample was 192mg. After 6 weeks, the mass reduced to approximately 7.893mg using its half-life of 4 days.

To determine the initial mass of the sample of Palladium-100, we can use the concept of radioactive decay and the formula for exponential decay:

Mass = initial mass × (1/2)^(time / half-life)

Let’s solve the first part of the question to find the initial mass after 24 days:

Mass = initial mass × (1/2)^(24 / 4)

3mg = initial mass × (1/2)^6

Dividing both sides by (1/2)^6:

Initial mass = 3mg / (1/2)^6

Initial mass = 3mg / (1/64)

Initial mass = 192mg

Therefore, the initial mass of the sample was 192mg.

Now let’s calculate the mass 6 weeks after the start. Since 6 weeks equal 6 × 7 = 42 days:

Mass = initial mass × (1/2)^(time / half-life)

Mass = 192mg × (1/2)^(42 / 4)

Mass = 192mg × (1/2)^10.5

Mass ≈ 192mg × 0.041103

Mass ≈ 7.893mg

Therefore, the mass of the sample 6 weeks after the start is approximately 7.893mg.

Learn more about Exponential decay here: brainly.com/question/13674608

#SPJ11

The following problem refers to a closed Leontief model. Suppose the technology matrix for a closed model of a simple economy is given by matrix A. Find the gross productions for the industries. (Let H represent the number of household units produced, and give your answers in terms of H.) A = government industry households G I H 0.4 0.2 0.2 0.2 0.5 0.5 0.4 0.3 0.3 H Need Help? Read It Government Industry Households X units X units units

Answers

The gross productions for the industries in the closed Leontief model, given the technology matrix A, can be expressed as follows:

Government industry: 0.4H units

Industry: 0.2H units

Households: 0.2H units

In a closed Leontief model, the technology matrix A represents the production coefficients for each industry. The rows of the matrix represent the industries, and the columns represent the sectors (including government and households) involved in the production process.

To find the gross productions for the industries, we can multiply each row of the matrix A by the number of household units produced, denoted as H.

For the government industry, the production coefficient in the first row of matrix A is 0.4. Multiplying this coefficient by H, we get the gross production for the government industry as 0.4H units.

Similarly, for the industry sector, the production coefficient in the second row of matrix A is 0.2. Multiplying this coefficient by H, we get the gross production for the industry as 0.2H units.

Finally, for the households sector, the production coefficient in the third row of matrix A is 0.2. Multiplying this coefficient by H, we get the gross production for households as 0.2H units.

In summary, the gross productions for the industries in terms of H are as follows: government industry - 0.4H units, industry - 0.2H units, and households - 0.2H units.

Learn more about gross productions.
brainly.com/question/14017102

#SPJ11

iii) Determine whether A=[−10,5)∪{7,8} is open or dosed set. [3 marks ] Tentukan samada A=[−10,5)∪{7,8} adalah set terbuka atau set tertutup. 13 markah

Answers

A=[−10,5)∪{7,8} is a closed set.

A closed set is a set that contains all its limit points. In the given set A=[−10,5)∪{7,8}, the interval [−10,5) is a closed interval because it includes its endpoints and all the points in between. The set {7,8} consists of two isolated points, which are also considered closed. Therefore, the union of a closed interval and isolated points results in a closed set.

Learn more about set

brainly.com/question/8053622

#SPJ11

Determine the first three nonzero terms in the Taylor polynomial approximation for the given initial value problem. y ′
=x 2
+3y 2
;y(0)=1 The Taylor approximation to three nonzero terms is y(x)=+⋯.

Answers

The first three nonzero terms in the Taylor polynomial approximation are:

y(x) = 1 + 3x + 6x²/2! = 1 + 3x + 3x².

The given initial value problem is y′ = x^2 + 3y^2, y(0) = 1. We want to determine the first three nonzero terms in the Taylor polynomial approximation for the given initial value problem.

The Taylor polynomial can be written as:

T(y) = y(a) + y'(a)(x - a)/1! + y''(a)(x - a)^2/2! + ...

The Taylor approximation to three nonzero terms is:

y(x) = y(0) + y'(0)x + y''(0)x²/2! + y'''(0)x³/3! + ...

First, let's find the first and second derivatives of y(x):

y'(x) = x^2 + 3y^2

y''(x) = d/dx [x^2 + 3y^2] = 2x + 6y

Now, let's evaluate these derivatives at x = 0:

y'(0) = 0^2 + 3(1)^2 = 3

y''(0) = 2(0) + 6(1)² = 6

Therefore, the first three nonzero terms in the Taylor polynomial approximation are:

y(x) = 1 + 3x + 6x²/2! = 1 + 3x + 3x².

Learn more about Taylor polynomial

https://brainly.com/question/30481013

#SPJ11

Write log92 as a quotient of natural logarithms. Provide your answer below:
ln___/ ln____

Answers

log₉₂ can be expressed as a quotient of natural logarithms as ln(2) / ln(9).

logarithm, the exponent or power to which a base must be raised to yield a given number. Expressed mathematically, x is the logarithm of n to the base b if bx = n, in which case one writes x = logb n. For example, 23 = 8; therefore, 3 is the logarithm of 8 to base 2, or 3 = log2 8

To express log₉₂ as a quotient of natural logarithms, we can use the logarithmic identity:

logₐ(b) = logₓ(b) / logₓ(a)

In this case, we want to find the quotient of natural logarithms, so we can rewrite log₉₂ as:

log₉₂ = ln(2) / ln(9)

know more about logarithms here:

https://brainly.com/question/1204996

#SPJ11

B. a) Find the equation of the circle with center (4, -3) and radius 7. 4 (2 marks) b) Determine whether the points P(-5,2) lie inside, outside or on the circle in part (a) (2 marks)

Answers

The equation of the circle with center (4, -3) and radius 7. 4 is x² + y² - 8x + 6y - 40 = 0. and the point P(-5,2) lies outside the circle.

a) Equation of the circle with a center (4,-3) and radius of 7 is given by the equation:

(x-4)²+(y+3)²=7².

(x-4)²+(y+3)²=7²x²-8x+16+y²+6y+9

=49x²+y²-8x+6y+9-49

=0

Therefore, the equation of the circle is x² + y² - 8x + 6y - 40 = 0.

b) The point P(-5,2) does not lie inside the circle because its distance from the center of the circle (4,-3) is greater than the radius of the circle i.e. d(P,(4,-3))>7.

So the point P(-5,2) lies outside the circle.

Learn more about circle  -

brainly.com/question/28162977

#SPJ11



Assume y varies directly with x . If y=-3 when x=-2/5, what is x when y is 45 ?

Answers

Using the constant proportionality we get the value of x as 6 when y is 45.

Given that y varies directly with x.

If y=-3 when x=-2/5, then we can find the constant of proportionality by using the formula:

`y = kx`.

Where `k` is the constant of proportionality.

So we have `-3 = k(-2/5)`.To solve for `k`, we will isolate it by dividing both sides of the equation by `(-2/5)`.

Therefore we get `k = -3/(-2/5) = 7.5`

Now we can find x when y = 45 using the formula `y = kx`.

Therefore, `45 = 7.5x`.To solve for `x`, we will divide both sides by 7.5.

Therefore, `x = 6`.So when y is 45, x is 6. Hence, the answer is `6`.

To know more about  constant proportionality refer here:

https://brainly.com/question/8598338

#SPJ11



Analyze the function. Find the intercepts, extrema, intervals of

increase/decrease and concavity, points of inflection an make a

sketch of the function, f(x) = (x - 8)^2/3

Answers

The function f(x) = (x - 8)^(2/3) has no x-intercepts and a y-intercept at (-8)^(2/3). It has no extrema or points of inflection. The function is increasing for x < 8 and decreasing for x > 8. It is concave down for the entire domain. Based on this analysis, a sketch of the function would show a concave-down curve with no intercepts, extrema, or points of inflection.

To analyze the function f(x) = (x - 8)^(2/3), we'll examine its properties step by step.

1. Intercepts:

To find the x-intercept, we set f(x) = 0 and solve for x:

(x - 8)^(2/3) = 0

Since a number raised to the power of 2/3 can never be zero, there are no x-intercepts for this function.

To find the y-intercept, we substitute x = 0 into the function:

f(0) = (0 - 8)^(2/3) = (-8)^(2/3)

The y-intercept is (-8)^(2/3).

2. Extrema:

To find the extrema, we take the derivative of the function and set it equal to zero:

f'(x) = (2/3)(x - 8)^(-1/3)

Setting f'(x) = 0, we get:

(2/3)(x - 8)^(-1/3) = 0

This equation has no real solutions, which means there are no local extrema.

3. Intervals of Increase/Decrease:

To determine the intervals of increase and decrease, we analyze the sign of the derivative. We can see that f'(x) > 0 for x < 8 and f'(x) < 0 for x > 8. Therefore, the function is increasing on the interval (-∞, 8) and decreasing on the interval (8, ∞).

4. Concavity:

To determine the concavity, we take the second derivative of the function:

f''(x) = (-2/9)(x - 8)^(-4/3)

Analyzing the sign of f''(x), we can see that it is negative for all real values of x. This means the function is concave down for the entire domain.

5. Points of Inflection:

To find the points of inflection, we set the second derivative equal to zero and solve for x:

(-2/9)(x - 8)^(-4/3) = 0

This equation has no real solutions, indicating that there are no points of inflection.

Based on the analysis above, we can sketch the function f(x) = (x - 8)^(2/3) as a concave-down curve with no intercepts, extrema, or points of inflection. The y-intercept is at (-8)^(2/3). The function is increasing for x < 8 and decreasing for x > 8.

Learn more about concave-down curve here :-

https://brainly.com/question/29142394

#SPJ11

I’m going to give 20points to who can answer this correctly first

Answers

Answer: $60

Step-by-step explanation:

Total annual for 1 share is

.15 x 4 =.6

for 100 shares

.6x100

$60

Let Gn = (0, 1+1/n). Prove that ∩ Gn =
(0,1] is neither closed nor open.

Answers

The set ∩ Gn = (0,1] is neither closed nor open.

To prove that the set ∩ Gn = (0,1] is neither closed nor open, we need to examine its properties.

1. Closedness:

A set is closed if it contains all its limit points. In this case, the set ∩ Gn = (0,1] does not contain its left endpoint 0, which is a limit point.

Therefore, it fails to satisfy the condition for closedness.

2. Openness:

A set is open if every point in the set is an interior point.

In this case, the set ∩ Gn = (0,1] does not contain its right endpoint 1 as an interior point.

Any neighborhood around 1 would contain points outside of the set, violating the condition for openness.

Hence, we can conclude that the set ∩ Gn = (0,1] is neither closed nor open.

It is not closed because it does not contain all its limit points, and it is not open because it does not contain all its interior points.

Learn more about closed nor open:

brainly.com/question/33166130

#SPJ11

Given y"(t) + 2 y'(t) + y(t) = 2. Find y(t) if y(0) = 3 and y'(0) = 2. Solution: -t y(t) = 7te^-t + 3 e^-t

Answers

The solution is y(t) = e^(-t) + te^(-t) + 2.


The given differential equation is y"(t) + 2y'(t) + y(t) = 2.

To solve this differential equation, we can use the method of undetermined coefficients.

First, let's find the complementary solution (the solution to the homogeneous equation) by assuming y(t) = e^(rt).

Substituting this assumption into the differential equation, we get r^2e^(rt) + 2re^(rt) + e^(rt) = 0.

Dividing through by e^(rt), we have r^2 + 2r + 1 = 0.

This is a quadratic equation that can be factored as (r + 1)^2 = 0.

So, the complementary solution is y_c(t) = c1e^(-t) + c2te^(-t), where c1 and c2 are arbitrary constants.

Now, let's find the particular solution (the solution to the non-homogeneous equation).

Since the right-hand side is a constant, we can assume a particular solution of the form y_p(t) = A, where A is a constant.

Substituting this assumption into the differential equation, we get 0 + 0 + A = 2.

Therefore, A = 2.

So, the particular solution is y_p(t) = 2.

The general solution is given by y(t) = y_c(t) + y_p(t).

Substituting the values y_c(t) = c1e^(-t) + c2te^(-t) and y_p(t) = 2 into the general solution, we have y(t) = c1e^(-t) + c2te^(-t) + 2.

Now, we can use the initial conditions y(0) = 3 and y'(0) = 2 to find the values of c1 and c2.

Substituting t = 0 and y(0) = 3 into the general solution, we get c1e^(-0) + c2(0)e^(-0) + 2 = 3.

Simplifying this equation, we have c1 + 2 = 3.

Therefore, c1 = 1.

Next, substituting t = 0 and y'(0) = 2 into the general solution, we get -c1e^(-0) + c2e^(-0) + 0 + 2 = 2.

Simplifying this equation, we have -c1 + c2 + 2 = 2.

Since we already found c1 = 1, we can substitute it into the equation: -1 + c2 + 2 = 2.

Therefore, c2 = 1.

So, the particular solution to the given differential equation is y(t) = e^(-t) + te^(-t) + 2.



To know more about differential equation, refer here:

https://brainly.com/question/33433874#

#SPJ11

Below is the graph of f(x) - In(x). How would you describe the graph of
g(x) = --In(x)?
2-
1
+
O A. g(x) compresses f(x) by a factor of
OB. g(x) shifts f(x) to the left units.
OC. g(x) stretches f(x) vertically by a factor of
OD. g(x) shifts f(x) vertically units.

Answers

Answer:

Based on the given description, we have the graph of f(x) = -ln(x). Let's analyze the impact of the function g(x) = -(-ln(x)) = ln(x).

A. g(x) compresses f(x) by a factor of 2:

This is not accurate because g(x) = ln(x) does not compress f(x) horizontally.

B. g(x) shifts f(x) to the left 1 unit:

This is accurate. The graph of g(x) = ln(x) will shift the graph of f(x) = -ln(x) to the right by 1 unit, not to the left.

C. g(x) stretches f(x) vertically by a factor of 2:

This is not accurate because g(x) = ln(x) does not stretch or compress the graph of f(x) vertically.

D. g(x) shifts f(x) vertically 2 units:

This is not accurate because g(x) = ln(x) does not shift the graph of f(x) vertically.

Therefore, the correct statement is:

B. g(x) shifts f(x) to the right 1 unit.

1 1 0
A15 Let B = 0 · 2 1 and let L : R³ → R³ be the
-1 0 1 linear mapping such that
L(1,0, −1) = (0,1,1)
L(1, 2, 0) = (-2,0,2)
L(0, 1, 1) = (5, 3, −5)
(a) Let x = 7. Find [x] B. 6
(b) Find [L]g.
(c) Use parts (a) and (b) to determine L(x).

Answers

Linear Mapping

a. [x]B = (-15, 7, 0)

b. [L]g = [[0, 0, 0], [1, 0, 0], [1, 0, 0]]

c. (0,1,0) = 0*(1,0,0) + 1*(0,1,0) + 0*(0,0,1),

   (2,0,1) = 2*(1,0,0) + 0*(0,1,0) + 1*(0,0,1),

   (-1,1,0) = -1*(1,0,0) + 1*(0,1,0) + 0*(0,0,1).

(a) To find [x]B, we need to express the vector x = (7) in the basis B = {(0,1,0), (2,0,1), (-1,1,0)}. We can write x as a linear combination of the basis vectors:

x = a(0,1,0) + b(2,0,1) + c(-1,1,0),

where a, b, and c are scalar coefficients to be determined. We can solve for these coefficients by setting up a system of linear equations using the given basis vectors:

0a + 2b - c = 7,

1a + 0b + c = 0,

0a + 1b + 0c = 15.

Solving this system of equations, we find a = -15, b = 7, and c = 0. Therefore, [x]B = (-15, 7, 0).

(b) To find [L]g, we need to determine the matrix representation of the linear mapping L with respect to the standard basis g = {(1,0,0), (0,1,0), (0,0,1)}. We can determine the matrix by applying L to each basis vector and expressing the results as linear combinations of the basis vectors g:

L(1,0,0) = L(1*(1,0,0)) = 1L(1,0,-1) = 1(0,1,1) = (0,1,1) = 0*(1,0,0) + 1*(0,1,0) + 1*(0,0,1),

L(0,1,0) = L(0*(1,0,0)) = 0L(1,0,-1) = 0(0,1,1) = (0,0,0) = 0*(1,0,0) + 0*(0,1,0) + 0*(0,0,1),

L(0,0,1) = L(0*(1,0,0)) = 0L(1,0,-1) = 0(0,1,1) = (0,0,0) = 0*(1,0,0) + 0*(0,1,0) + 0*(0,0,1).

Therefore, [L]g = [[0, 0, 0], [1, 0, 0], [1, 0, 0]].

(c) To determine L(x), we can use the matrix representation [L]g and the coordinate vector [x]g. Since we already found [x]B in part (a), we need to convert it to the standard basis representation [x]g. We can do this by finding the coordinates of [x]B with respect to the basis g:

[x]g = P[x]B,

where P is the transition matrix from B to g. To find P, we express the basis vectors of B in terms of g:

(0,1,0) = 0*(1,0,0) + 1*(0,1,0) + 0*(0,0,1),

(2,0,1) = 2*(1,0,0) + 0*(0,1,0) + 1*(0,0,1),

(-1,1,0) = -1*(1,0,0) + 1*(0,1,0) + 0*(0,0,1).

Learn more about: linear mapping

https://brainly.com/question/29551145

#SPJ11

Verify that the indicated function is an explicit solution of the given differential equation. assume an appropriate interval i of definition for each solution dy/dt 20y=24, y=6/5-6/5e^-20t

Answers

The function y(t) = (6/5) - (6/5) is a valid explicit solution to the differential equation dy/dt = 20y = 24, and it satisfies the equation for the specified interval of definition.

To verify that the function y(t) = (6/5) - (6/5)[tex]e^(-20t)[/tex] is an explicit solution of the differential equation dy/dt = 20y, we need to substitute the function into the differential equation and check if it satisfies the equation.
First, let's find dy/dt using the given function:
dy/dt = d/dt [(6/5) - (6/5)[tex]e^(-20t)[/tex]]
      = 0 + (6/5)(20)[tex]e^(-20t)[/tex] [Applying the chain rule]
      = 24[tex]e^(-20t)[/tex]
Now let's substitute this expression for dy/dt back into the differential equation:
24[tex]e^(-20t)[/tex] = 20[(6/5) - (6/5)e^(-20t)]
We can simplify this equation:
24[tex]e^(-20t)[/tex] = 24 - 24[tex]e^(-20t)[/tex]
Rearranging the equation, we have:
24[tex]e^(-20t)[/tex] + 24[tex]e^(-20t)[/tex] = 24
Combining like terms, we get:
48[tex]e^(-20t)[/tex] = 24
Dividing both sides by 48, we find:
[tex]e^(-20t)[/tex] = 1/2
Taking the natural logarithm of both sides, we have:
-20t = ln(1/2)
Solving for t, we get:
t = (1/20)ln(1/2)
Therefore, the function y(t) = (6/5) - (6/5)[tex]e^(-20t)[/tex]is a valid explicit solution to the differential equation dy/dt = 20y = 24, and it satisfies the equation for the specified interval of definition.

Learn more about differential here:

https://brainly.com/question/31383100

#SPJ11

Type the correct answer in each box. Use numerals instead of words.
Simplify the following polynomial expression.
(5z² + 13z-4)
-
(17z+7z

-
-
19)+(5z
z+
-
7) (3z +1)

Answers

The simplified polynomial expression is [tex](33z^2 - 40z)/2 + 8.[/tex]

To simplify the given polynomial expression, let's combine like terms and perform the necessary operations.

The expression is:

[tex](5z^2 + 13z - 4) - (17z + 7z^2/2 - 19) + (5z * z - 7) * (3z + 1)[/tex]

First, let's simplify the expressions within the parentheses:

[tex](5z^2 + 13z - 4) - (17z + (7z^2/2) - 19) + (5z * z - 7) * (3z + 1)[/tex]

Now, distribute the terms in the last parentheses:

[tex](5z^2 + 13z - 4) - (17z + (7z^2/2) - 19) + (15z^2 + 5z - 21z - 7)[/tex]

Next, combine like terms:

[tex]5z^2 + 13z - 4 - 17z - (7z^2/2) + 19 + 15z^2 + 5z - 21z - 7[/tex]

Combine the like terms with the same exponent:

[tex](5z^2 + 15z^2) + 13z - 17z + 5z - 21z - (7z^2/2) - 4 + 19 - 7\\20z^2 - 20z - (7z^2/2) + 8[/tex]

To simplify further, let's find a common denominator for the terms involving z^2:

[tex](40z^2 - 40z - 7z^2)/2 + 8[/tex]

Combine the terms with the same exponent:

(40z^2 - 7z^2 - 40z)/2 + 8

Simplify the expression:

[tex](33z^2 - 40z)/2 + 8[/tex]

The simplified polynomial expression is[tex](33z^2 - 40z)/2 + 8.[/tex]

Please note that the answer may vary depending on the interpretation of the equation and the intended simplification.

For moresuch questions on  polynomial expression visit:

https://brainly.com/question/4142886

#SPJ8

Let f(x,y)= 1 /√x 2 −y. (1.1.1) Find and sketch the domain of f. (1.1.2) Find the range of f.

Answers

(1.1.1) The domain of f(x, y) is the region above or on the parabolic curve y = x² in the xy-plane.

(1.1.2) The range of f(x, y) is all real numbers except the values of y on the curve y = x².

How to find the domain and range

(1.1.1) To find the domain of f(x, y), we need to identify the values of x and y for which the function is defined.

For a non negative value we have

x² - y ≥ 0

x² ≥ y

This means that the domain of f(x, y) is all values of x and y such that x² is greater than or equal to y. Geometrically, this represents the region above or on the parabolic curve y = x² in the xy-plane.

(1.1.2) To find the range of f(x, y), we need to determine the possible values that f(x, y) can take.

Since f(x, y) = 1/√(x² - y), the denominator cannot be zero. Therefore, the range of f(x, y) excludes values of y for which x² - y = 0.

Setting x² - y = 0 and solving for y, we have:

y = x²

This equation represents the parabolic curve y = x² in the xy-plane. The range of f(x, y) is all real numbers except the values of y on the curve y = x².

Learn more about domain at

https://brainly.com/question/26098895

#SPJ4

where r is the modulus of the complex numberu +−iV.
[15 points] Given function w=xyez. Find the following. (a) All first partial derivatives of w at (1,−1,0). (b) The directional derivative of w at (1,−1,0) along direction v=i+2j+2k. (c) Express ∂w/∂t if x=s+2t,y=s−2t,z=3st by the chain rule. Do NOT simplify.

Answers

A)The first partial derivatives of w at (1, -1, 0) are ∂w/∂x = -e²0 = -1,∂w/∂y = 1 × e²0 = 1,∂w/∂z = 1 ²(-1) ×e²0 = -1

B)The directional derivative of w at (1, -1, 0) along direction function is v = i + 2j + 2k is -1/3.

C)The expression for ∂w/∂t, without simplification, is 2(s - 2t)e²(3st) - 2(s + 2t)e²(3st) + 9s²s + 2t)(s - 2t).

To find all the first partial derivatives of w at (1, -1, 0), to find the partial derivatives with respect to each variable separately.

Given function: w = xy × e²z

∂w/∂x: Differentiating with respect to x while treating y and z as constants.

∂w/∂x = y × e²z

∂w/∂y: Differentiating with respect to y while treating x and z as constants.

∂w/∂y = x ×e²z

∂w/∂z: Differentiating with respect to z while treating x and y as constants.

∂w/∂z = xy ×e²z

(b) To find the directional derivative of w at (1, -1, 0) along the direction v = i + 2j + 2k,  to calculate the dot product of the gradient of w at (1, -1, 0) and the unit vector in the direction of v.

Gradient of w at (1, -1, 0):

∇w = (∂w/∂x, ∂w/∂y, ∂w/∂z) = (-1, 1, -1)

Unit vector in the direction of v:

|v| = √(1² + 2² + 2²) = √9 = 3

u = v/|v| = (1/3, 2/3, 2/3)

Directional derivative of w at (1, -1, 0) along direction v:

Dv(w) = ∇w · u = (-1, 1, -1) · (1/3, 2/3, 2/3) = -1/3 + 2/3 - 2/3 = -1/3

(c) To find ∂w/∂t using the chain rule,  to substitute the given expressions for x, y, and z into the function w = xy × e²z and then differentiate with respect to t.

Given: x = s + 2t, y = s - 2t, z = 3st

Substituting these values into w:

w = (s + 2t)(s - 2t) × e²(3st)

Differentiating with respect to t using the chain rule:

∂w/∂t = (∂w/∂x) × (∂x/∂t) + (∂w/∂y) ×(∂y/∂t) + (∂w/∂z) × (∂z/∂t)

Let's calculate each term separately:

∂w/∂x = (s - 2t) × e²(3st)

∂x/∂t = 2

∂w/∂y = (s + 2t) × e²(3st)

∂y/∂t = -2

∂w/∂z = (s + 2t)(s - 2t) × 3s

∂z/∂t = 3s

Now, substitute these values into the equation:

∂w/∂t = (s - 2t) × e²(3st) × 2 + (s + 2t) × e²(3st) ×(-2) + (s + 2t)(s - 2t) × 3s × 3s

∂w/∂t = 2(s - 2t)e²(3st) - 2(s + 2t)e²(3st) + 9s²(s + 2t)(s - 2t)

To know more about function here

https://brainly.com/question/28193995

#SPJ4

not sure of the answer for this one

Answers

Answer: x=43

Step-by-step explanation:

Looks like the 2 angles are a linear pair, 2 angles that make up a line.  So if added they equal 180

Equation:

x + 7 + 3x + 1 = 180                   >Combine like terms

4x +8 = 180                               >Subtract 8 from both sides

4x = 172                                    >Divide both sides by 4

x = 43

y=acosk(t−b) The function g is defined by y=mcscc(x−d) The constants k and c are positive. (4.1) For the function f determine: (a) the amplitude, and hence a; (1) (b) the period; (1) (c) the constant k; (1) (d) the phase shift, and hence b, and then (1) (e) write down the equation that defines f. ( 2 )

Answers

The equation that defines f is y = acos(t - b), where 'a' is the amplitude, 'k' is the constant, 'b' is the phase shift, and the period can be determined using the formula period = 2π/k.

To analyze the function f: y = acos(k(t - b)), let's determine the values of amplitude, period, constant k, phase shift, and the equation that defines f.

(a) The amplitude of the function f is given by the absolute value of the coefficient 'a'. In this case, the coefficient 'a' is '1'. Therefore, the amplitude of f is 1.

(b) The period of the function f can be determined using the formula: period = 2π/k. In this case, the coefficient 'k' is unknown. We'll determine it in part (c) first, and then calculate the period.

(c) To find the constant 'k', we can observe that the argument of the cosine function, (t - b), is inside the parentheses. For a standard cosine function, the argument inside the parentheses should be in the form (x - d), where 'd' represents the phase shift.

Therefore, to match the forms, we equate t - b with x - d:

t - b = x - d

Comparing corresponding terms, we have:

t = x   (to match 'x')

-b = -d  (to match constants)

From this, we can deduce that k = 1, which is the value of the constant 'k'.

(d) The phase shift is given by the value of 'b' in the equation. From the previous step, we determined that -b = -d. This implies that b = d.

(e) Finally, we can write down the equation that defines f using the obtained values. We have:

f: y = acos(k(t - b))

  = acos(1(t - b))

  = acos(t - b)

Learn more about amplitude

https://brainly.com/question/23567551

#SPJ11

This problem illustrates how banks create credit and can thereby lend out more money than has been deposited. Suppose that $100 is deposited in a mid-sized bank. The US Federal Reserve requires that mid-sized banks hold 3% of the money deposited, so they are able to lend out 97% of their deposits.1 Thus $97 of the original $100 is loaned out to other customers (to start a business, for example). This $97 becomes someone else’s income and, sooner or later, is redeposited in the bank. Thus 97% of $97, or $97(0.97) = $94.09, is loaned out again and eventually redeposited. Of the $94.09, the bank again loans out 97%, and so on.
(a) Find to 2 decimal places the total amount of money deposited in the bank as a result of these transactions.
(b) The total amount of money deposited divided by the original deposit is called the credit multiplier. Calculate to 2 decimal places the credit multiplier for this example.

Answers

a. The total amount of money deposited in the bank as a result of these transactions is $3333.33.

b. The credit multiplier for this example is 33.33.

a. The total amount of money deposited in the bank as a result of these transactions can be found by summing up the amounts loaned out and eventually redeposited.

Starting with the original deposit of $100, 97% of it, which is $97, is loaned out. This $97 is then redeposited in the bank.

From this redeposited amount, 97% is loaned out again, which is $97(0.97) = $94.09. This $94.09 is also redeposited in the bank.

Continuing this process, we can find the total amount of money deposited in the bank.

After multiple rounds of lending and redepositing, we can observe that each new round decreases by 3%.

To calculate the total amount of money deposited, we can use the formula for the sum of a geometric series:

Total amount deposited = original deposit + (original deposit * lending percentage) + (original deposit * lending percentage^2) + ...

In this case, the original deposit is $100, and the lending percentage is 97% or 0.97.

Using the formula, we can find the total amount of money deposited by summing up each round:

$100 + $97 + $94.09 + ...

This is an infinite geometric series, and the sum of an infinite geometric series is given by:

Sum = a / (1 - r)


Where "a" is the first term and "r" is the common ratio.

In this case, "a" is $100 and "r" is 0.97.

Plugging in these values into the formula, we get:

Total amount deposited = $100 / (1 - 0.97)

Total amount deposited = $100 / 0.03


Total amount deposited = $3333.33 (rounded to 2 decimal places)

Therefore, the total amount of money deposited in the bank as a result of these transactions is $3333.33.

b. Now let's calculate the credit multiplier for this example.

The credit multiplier is the ratio of the total amount of money deposited to the original deposit.

Credit multiplier = Total amount deposited / Original deposit

Credit multiplier = $3333.33 / $100

Credit multiplier = 33.33 (rounded to 2 decimal places)


Therefore, the credit multiplier for this example is 33.33.

Learn more about 'credit':

https://brainly.com/question/13964348

#SPJ11

im having trouble to find the inverse function in slope for f(x)=-x-6

Answers

Answer:

y=-x-6

Step-by-step explanation:

First step is to put y=-x-6

Second step is to replace the y with x and the x with y:

x=-y-6

Now solve for y:

-y=x+6

y=-x-6

In this case the inverse is the same as the equation

3. Q and R are independent events. If P(Q) = 0.8 and P(R) = 0.2, find P(Q and R).
1
0.16
0.84

Answers

Answer:

0.16

Step-by-step explanation:

P(Q and R) = P(Q) * P(R) (since Q and R are independent)

= 0.8 * 0.2

= 0.16

3 The transformation T sends
(1, 2) --> (3, -1)
(-2, 0) --> (-4, 2)
(0, 4) --> (2, 2)
Is T a linear transformation? If it is, find a matrix representation for T. If it's not, explain why.

Answers

we cannot find a matrix representation for T.

To determine whether the transformation T is linear, we need to check two conditions:

Preservation of addition: T(u + v) = T(u) + T(v) for any vectors u and v.

Preservation of scalar multiplication: T(cu) = cT(u) for any scalar c and vector u.

Let's check if these conditions hold for the given transformation T:

(1, 2) --> (3, -1)

(-2, 0) --> (-4, 2)

(0, 4) --> (2, 2)

Condition 1: Preservation of addition.

Let's take the first and second vectors: (1, 2) and (-2, 0).

T((1, 2) + (-2, 0)) = T((-1, 2)) = (3, -1)

T(1, 2) + T(-2, 0) = (3, -1) + (-4, 2) = (-1, 1)

We can see that T((1, 2) + (-2, 0)) ≠ T(1, 2) + T(-2, 0). Therefore, condition 1 is not satisfied, which means that T does not preserve addition.

Since T fails to satisfy the preservation of addition, it cannot be a linear transformation. Therefore, we cannot find a matrix representation for T.

Learn more about Matrix here
https://brainly.com/question/28180105

#SPJ11

Help me i'm stuck 1 math

Answers

Answer:

V=504 cm^3

Step-by-step explanation:

The volume of a rectangular prism = base * width * height

V = 8*7*9 = 504 cm^3

Find the product of 32 and 46. Now reverse the digits and find the product of 23 and 64. The products are the same!
Does this happen with any pair of two-digit numbers? Find two other pairs of two-digit numbers that have this property.
Is there a way to tell (without doing the arithmetic) if a given pair of two-digit numbers will have this property?

Answers

Let's calculate the products and check if they indeed have the same value:

Product of 32 and 46:

32 * 46 = 1,472

Reverse the digits of 23 and 64:

23 * 64 = 1,472

As you mentioned, the products are the same. This phenomenon is not unique to this particular pair of numbers. In fact, it occurs with any pair of two-digit numbers whose digits, when reversed, are the same as the product of the original numbers.

To find two other pairs of two-digit numbers that have this property, we can explore a few examples:

Product of 13 and 62:

13 * 62 = 806

Reversed digits: 31 * 26 = 806

Product of 17 and 83:

17 * 83 = 1,411

Reversed digits: 71 * 38 = 1,411

As for determining if a given pair of two-digit numbers will have this property without actually performing the multiplication, there is a simple rule. For any pair of two-digit numbers (AB and CD), if the sum of A and D equals the sum of B and C, then the products of the original and reversed digits will be the same.

For example, let's consider the pair 25 and 79:

A = 2, B = 5, C = 7, D = 9

The sum of A and D is 2 + 9 = 11, and the sum of B and C is 5 + 7 = 12. Since the sums are not equal (11 ≠ 12), we can determine that the products of the original and reversed digits will not be the same for this pair.

Therefore, by checking the sums of the digits in the two-digit numbers, we can determine whether they will have the property of the products being the same when digits are reversed.

Other Questions
How long it takes for the light of a star to reach us if thestar is at a distance of 8 10^10km from Earth. Question: The Journal Of Applied Communication Research, Public Relations Review, And The Academy Of Management Journal Are Most Likely Examples Of Which Type Of Contributor Of Information? Informal Scholarly Journalistic Most Of The Information Minnesota Public Radio (MPR) Produces--Or Most Of The Information You Might Have Access To--Are Considered To Be FromThe Journal of Applied Communication Research, Public Relations Review, and the Academy of Management Journal are most likely examples of which type of contributor of information? InformalScholarlyJournalistic What are the links between patriarchy, the abuse of power andchild abuse? Explain in detail What is the best type of statistical analysis to use for astudy, that compares a depression treatment with a placebo? A shopper standing 2.20 m from a convex security mirror sees his image with a magnification of 0.280. A shopper standing 2.20 m from a convex security mirror sees his image with a magnification of 0.280. (a) Where is his image (in m)? (Use the correct sign.) m behind the mirror (b) What is the focal length (in m) of the mirror? m (c) What is its radius of curvature in m)? m How does time of development affect density and contrast of the radiographic film? Use the Laplace transform to solve the given initial value problem. y" - 12y85y = 0; y(0) = 6, y'(0) = 58 y(t) = [ Marcel Co. is growing quickly. Dividends are expected to grow at a rate of 0.09 for the next 4 years, with the growth rate falling off to a constant 0.01 thereafter. If the required return is 0.14 and the company just paid a $0.88 dividend, what is the current share price? Answer with 2 decimals (e.g. 45.45). A 27-year-old, sexually active man comes to your clinic because of the increasing number and size of warty lesions slowly enlarging on his external genitalia during the past year. On physical examination, there are multiple 1- to 3-mm sessile, nonulcerated, papillary excrescences over the inner surface of the penile prepuce. These lesions are excised, but 2 years later, similar lesions appear. Which of the following conditions is most likely associated with his recurrent lesions?a. Koilocytosis caused by Herpes Simplex Virus infectionb. Granulomatous inflammation caused by Neisseria gonorrhoeae infectionc. Koilocytosis caused by Human Papillomavirus infectiond. Granulomatous inflammation caused by Candida albicans infection Exercise 1 Above each infinitive, write n if it is used as a noun, adj. if it is used as an adjective, and adv. if it is used as an adverb.At Regents Park it is fun to view the Zoological Gardens. According to the Decision-Plane model studies that are high cost and low benefit are typically not approved difficult expedited approved Reservation wage and human capital theories areexamples of the labour demand theory . True or False You were assigned to make souvenirs. You have 4m20cm of ribbon which you plan to use. You want tocut the ribbon equally into 70cm long pieces. Howmany smaller ribbons can you make? "According to Epicurus, happiness is the same as:Group of answer choicesa. wealth.b. power.c. pleasure.d. prestige." Caleb was lacking potassium. Which food or beverage can help him the most in getting more potassium in his diet? A. milk B. cauliflower C. egg D. oatmeal 1. Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.10 gallons of gasoline. Only 30% of the gasoline goes into useful work by the force that keeps the car moving at constant speed despite friction. (The energy content of gasoline is 1.30 108 J per gallon.)(a) What is the force (in N) exerted to keep the car moving at constant speed?______N(b) If the required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?____gallons2. Calculate the work done (in J) by a 75.0 kg man who pushes a crate 4.40 m up along a ramp that makes an angle of 20.0 with the horizontal. (See the figure below.) He exerts a force of 485 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate and on his body to get up the ramp. (in J)3. a) Calculate the force (in N) needed to bring a 850 kg car to rest from a speed of 95.0 km/h in a distance of 105 m (a fairly typical distance for a non-panic stop).______N(b)Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).force in (b)force in (a)= Post Your Own Case Study Introduction and Background Patient history o age o gender o travel history o food history o time and place of illness onset o any events attended or other possible" Answer the following - show your work! (5 marks): Maximum bending moment: A simply supported rectangular beam that is 3000 mm long supports a point load (P) of 5000 N at midspan (center). Assume that the dimensions of the beams are as follows: b= 127 mm and h = 254 mm, d=254mm. What is the maximum bending moment developed in the beam? What is the overall stress? f = Mmax (h/2)/bd3/12 Mmax = PL/4 The second floor of a house is 6 mm above the street level.Part AHow much work is required to lift a 300-kgkg refrigerator to the second-story level? Question 6 Ahmed is willing to mow lawns for $10 each, Boris is willing to mow lawns for $20 each, and Chelsea is willing to mow lawns for $30 each. If the going rate for lawn mowing is $23, what is the total producer surplus received by the three of them Steam Workshop Downloader