(c) Solve the non-homogeneous equation by using the method variation of parameters y" + 4y' + 4y = ex. (8 marks)

Answers

Answer 1

The general solution of the non-homogeneous equation by using the method of variation of parameters is:y(t) = c1e^(-2t) + c2te^(-2t) + (1/5)t.

To solve the non-homogeneous equation by using the method variation of parameters y" + 4y' + 4y = ex, we will proceed by the following steps:

Step 1: Find the general solution of the corresponding homogeneous equation: y''+4y'+4y=0.  

First, let us solve the corresponding homogeneous equation:

y'' + 4y' + 4y = 0

The characteristic equation is r^2 + 4r + 4 = 0.

Factoring the characteristic equation we get, (r + 2)^2 = 0.

Solving for the roots of the characteristic equation, we have:r1 = r2 which is -2

The general solution to the corresponding homogeneous equation is

yh(t) = c1e^(-2t) + c2te^(-2t)

Step 2: Find the particular solution of the non-homogeneous equation: y''+4y'+4y=ex

To find the particular solution of the non-homogeneous equation, we can use the method of undetermined coefficients. The non-homogeneous term is ex, which is of the same form as the function f(t) = emt.

We can guess that the particular solution has the form of yp(t) = Ate^t.

Using the guess yp(t) = Ate^t, we have:

yp'(t) = Ae^t + Ate^t  and

yp''(t) = 2Ae^t + Ate^t.

Substituting these derivatives into the differential equation we get:

2Ae^t + Ate^t + 4Ae^t + 4Ate^t + 4Ate^t = ex

We have two different terms with te^t, so we will solve for them separately.

Ate^t + 4Ate^t = ex

=> (A + 4A)te^t = ex

=> 5Ate^t = ex

=> A = (1/5)e^(-t)

Now we can find the particular solution:

y_p(t) = Ate^t = (1/5)te^t e^(-t)= (1/5)t

Step 3: Find the general solution of the non-homogeneous equation: y(t) = yh(t) + yp(t)y(t) = c1e^(-2t) + c2te^(-2t) + (1/5)t

Therefore, the general solution of the non-homogeneous equation by using the method of variation of parameters is:y(t) = c1e^(-2t) + c2te^(-2t) + (1/5)t.

Learn more about the method variation of parameters from the given link-

https://brainly.com/question/33353929

#SPJ11


Related Questions

Question 3 Solve the system of linear equations using naïve gaussian elimination What happen to the second equation after eliminating the variable x? O 0.5y+3.5z-11.5 -0.5y+3.5z=-11.5 -0.5y-3.5z-11.5 0.5y-3.5z=11.5 2x+y-z=1 3x+2y+2z=13 4x-2y+3z-9

Answers

The second equation after eliminating the variable x is 0.5y + 3.5z = 11.5.

What happens to the second equation after eliminating the variable x?

To solve the system of linear equations using Gaussian elimination, we'll perform row operations to eliminate variables one by one. Let's start with the given system of equations:

2x + y - z = 13x + 2y + 2z = 134x - 2y + 3z = -9

Eliminate x from equations 2 and 3:

To eliminate x, we'll multiply equation 1 by -1.5 and add it to equation 2. We'll also multiply equation 1 by -2 and add it to equation 3.

(3x + 2y + 2z) - 1.5 * (2x + y - z) = 13 - 1.5 * 13x + 2y + 2z - 3x - 1.5y + 1.5z = 13 - 1.50.5y + 3.5z = 11.5

New equation 3: (4x - 2y + 3z) - 2 * (2x + y - z) = -9 - 2 * 1

Simplifying the equation 3: 4x - 2y + 3z - 4x - 2y + 2z = -9 - 2

Simplifying further: -0.5y - 3.5z = -11.5

So, the second equation after eliminating the variable x is 0.5y + 3.5z = 11.5.

Learn more about variable

brainly.com/question/15078630

#SPJ11

HELP!!

Can you solve the ratio problems and type the correct code? Please remember to type in ALL CAPS with no spaces. *

Answers

The solutions to the ratio problems are as follows:

1. Ratio of nonfiction to fiction 1:2

2. Number of hours rested is 175

3. Ratio of pants to shirts is 3:5

4. The ratio of medium to large shirts is 7:3

How to determine ratios

We can determine the ratio by expressing the figures as numerator and denominator and dividing them with a common factor until no more division is possible.

In the first instance, we are told to find the ratio between nonfiction and fiction will be 2500/5000. When these are divided by 5, the remaining figure would be 1/2. So, the ratio is 1:2.

Learn more about ratios here:

https://brainly.com/question/12024093

#SPJ1

An annuity has a payment of $300 at time t = 1, $350 at t = 2, and so on, with payments increasing $50 every year, until the last payment of $1,000. With an interest rate of 8%, calculate the present value of this annuity.

Answers

The present value of the annuity is $4,813.52.

To calculate the present value of the annuity, we can use the formula for the present value of an increasing annuity:

PV = C * (1 - (1 + r)^(-n)) / (r - g)

Where:

PV = Present Value

C = Payment amount at time t=1

r = Interest rate

n = Number of payments

g = Growth rate of payments

In this case:

C = $300

r = 8% or 0.08

n = Number of payments = Last payment amount - First payment amount / Growth rate + 1 = ($1000 - $300) / $50 + 1 = 14

g = Growth rate of payments = $50

Plugging in these values into the formula, we get:

PV = $300 * (1 - (1 + 0.08)^(-14)) / (0.08 - 0.05) = $4,813.52

Therefore, the present value of this annuity is $4,813.52. This means that if we were to invest $4,813.52 today at an interest rate of 8%, it would grow to match the future cash flows of the annuity.

Learn more about annuity here: brainly.com/question/33493095

#SPJ11

If A and B are m×n matrices, show that U={x in Rn|Ax=Bx} is a
subspace of Rn.

Answers

This shows that cx is also a vector in U since it satisfies the equation Ax = Bx.

To show that U = {x in R^n | Ax = Bx} is a subspace of R^n, we need to demonstrate that it satisfies three conditions:

U is non-empty: Since A and B are matrices, there will always be at least one vector x that satisfies Ax = Bx, namely the zero vector.

U is closed under vector addition: Let x1 and x2 be any two vectors in U. We want to show that their sum, x1 + x2, is also in U.

From the definition of U, we have Ax1 = Bx1 and Ax2 = Bx2. Now, consider the sum of these two equations:

Ax1 + Ax2 = Bx1 + Bx2

Factoring out x1 and x2 on the left side gives:

A(x1 + x2) = B(x1 + x2)

This shows that x1 + x2 is also a vector in U since it satisfies the equation Ax = Bx.

U is closed under scalar multiplication: Let x be any vector in U, and let c be any scalar. We want to show that the scalar multiple cx is also in U.

From the definition of U, we have Ax = Bx. Now, consider the equation:

A(cx) = B(cx)

Using the properties of matrix multiplication and scalar multiplication, we can rewrite this as:

(cA)x = (cB)x

Since U satisfies all three conditions, it is a subspace of R^n.

know more about vector here:

https://brainly.com/question/24256726

#SPJ11

can someone help pls!!!!!!!!!!!!!

Answers

The vectors related to given points are AB <6, 4> and BC <4, 6>, respectively.

How to determine the definition of a vector

In this problem we must determine the equations of two vectors represented by a figure, each vector is between two consecutive points set on Cartesian plane. The definition of a vector is introduced below:

AB <x, y> = B(x, y) - A(x, y)

Where:

A(x, y) - Initial point.B(x, y) - Final point.

Now we proceed to determine each vector:

AB <x, y> = (6, 4) - (0, 0)

AB <x, y> = (6, 4)

AB <6, 4>

BC <x, y> = (10, 10) - (6, 4)

BC <x, y> = (4, 6)

BC <4, 6>

To learn more on vectors: https://brainly.com/question/31900604

#SPJ1

Jin's total assets are $8,794. Her liabilities are $6,292. Her net worth is

Answers

Jin's total assets are $8,794. Her liabilities are $6,292. Her net worth is $2,502.

To calculate Jin's net worth, we subtract her liabilities from her total assets.

Total Assets - Liabilities = Net Worth

Given:

Total Assets = $8,794

Liabilities = $6,292

Substituting the values, we have:

Net Worth = $8,794 - $6,292

Net Worth = $2,502

Therefore, Jin's net worth is $2,502.

for such more question on net worth

https://brainly.com/question/28256489

#SPJ8

Find the eigenvalues (A) of the matrix A = [ 3 0 1
2 2 2
-2 1 2 ]

Answers

The eigenvalues of the matrix A = [ 3 0 1 2 2 2 -2 1 2 ] are:

λ₁ = (5 - √17)/2 and λ₂ = (5 + √17)/2

To find the eigenvalues (A) of the matrix A = [ 3 0 1 2 2 2 -2 1 2 ], we use the following formula:

Eigenvalues (A) = |A - λI

|where λ represents the eigenvalue, I represents the identity matrix and |.| represents the determinant.

So, we have to find the determinant of the matrix A - λI.

Thus, we will substitute A = [ 3 0 1 2 2 2 -2 1 2 ] and I = [1 0 0 0 1 0 0 0 1] to get:

| A - λI | = | 3 - λ 0 1 2 2 - λ 2 -2 1 2 - λ |

To find the determinant of the matrix, we use the cofactor expansion along the first row:

| 3 - λ 0 1 2 2 - λ 2 -2 1 2 - λ | = (3 - λ) | 2 - λ 2 1 2 - λ | + 0 | 2 - λ 2 1 2 - λ | - 1 | 2 2 1 2 |

Therefore,| A - λI | = (3 - λ) [(2 - λ)(2 - λ) - 2(1)] - [(2 - λ)(2 - λ) - 2(1)] = (3 - λ) [(λ - 2)² - 2] - [(λ - 2)² - 2] = (λ - 2) [(3 - λ)(λ - 2) + λ - 4]

Now, we find the roots of the equation, which will give the eigenvalues:

λ - 2 = 0 ⇒ λ = 2λ² - 5λ + 2 = 0

The two roots of the equation λ² - 5λ + 2 = 0 are:

λ₁ = (5 - √17)/2 and λ₂ = (5 + √17)/2

Learn more about matrix at

https://brainly.com/question/32195881

#SPJ11

pls help asap if you can!!!!!!

Answers

Answer:

SSS, because a segment is congruent to itself.

PLEASEEEE YALLLLL I NEEEED HELP THIS LIFE OR DEATH

Answers

These are the answers: 12, be , and

Given the following linear ODE: y' - y = x; y(0) = 0. Then a solution of it is y = -1 + ex y = -x-1+e-* y = -x-1+ e* None of the mentioned

Answers

Correct option is y = -x-1 + e^x.

The given linear ODE:

y' - y = x; y(0) = 0 can be solved by the following method:

We first need to find the integrating factor of the given differential equation. We will find it using the following formula:

IF = e^integral of P(x) dx

Where P(x) is the coefficient of y (the function multiplying y).

In the given differential equation, P(x) = -1, hence we have,IF = e^-x We multiply this IF to both sides of the equation. This will reduce the left side to a product of the derivative of y and IF as shown below:

e^-x y' - e^-x y = xe^-x We can simplify the left side by applying the product rule of differentiation as shown below:

d/dx (e^-x y) = xe^-x We can integrate both sides to obtain the solution of the differential equation. The solution to the given linear ODE:y' - y = x; y(0) = 0 is:y = -x-1 + e^x + C where C is the constant of integration. Substituting y(0) = 0, we get,0 = -1 + 1 + C

Therefore, C = 0

Hence, the solution to the given differential equation: y = -x-1 + e^x

So, the correct option is y = -x-1 + e^x.

Learn more about integrating factor from the link :

https://brainly.com/question/30426977

#SPJ11

Write the equation of a parabola whose directrix is x=−10.5 and has a focus at (−9.5,7). Determine the slope of the tangent line, then find the equation of the tangent line at t=−1. x=6t,y=t^4 Slope: Equation:

Answers

This is the equation of the tangent line at t = -1 for the given parametric equation. It uses an independent variable known as a parameter and dependent variables that are defined as continuous functions of the parameter and independent of other variables.

To find the equation of a parabola with a given directrix and focus, we can use the standard form of the equation for a parabola:

1. The directrix is a vertical line, so the equation of the directrix can be written as x = -10.5.
The focus is given as (-9.5, 7).

The vertex of the parabola will lie halfway between the directrix and the focus, so the x-coordinate of the vertex is the average of -10.5 and -9.5, which is -10.
Since the parabola is symmetric with respect to its vertex, the y-coordinate of the vertex will be the same as the y-coordinate of the focus, which is 7.

Using the standard form of the equation for a parabola, we can write the equation as follows:

(x - h)^2 = 4p(y - k)

where (h, k) is the vertex and p is the distance between the vertex and the focus.

In this case, the vertex is (-10, 7) and the focus is (-9.5, 7), so p = 0.5.

Plugging in the values, we get:

(x - (-10))^2 = 4(0.5)(y - 7)

Simplifying, we have:

(x + 10)^2 = 2(y - 7)

This is the equation of the parabola.

2. To find the slope of the tangent line, we need to find the derivative of y with respect to x, dy/dx.

Using the chain rule, we have:

dy/dx = (dy/dt) / (dx/dt)

Differentiating the given parametric equations, we get:

dx/dt = 6
dy/dt = 4t^3

Plugging these values into the chain rule formula, we have:

dy/dx = (4t^3) / 6

Simplifying, we get:

dy/dx = (2/3)t^3

To find the slope of the tangent line at t = -1, we substitute t = -1 into the equation:

dy/dx = (2/3)(-1)^3
      = (2/3)(-1)
      = -2/3

So, the slope of the tangent line at t = -1 is -2/3.

To find the equation of the tangent line, we can use the point-slope form of the equation:

y - y1 = m(x - x1)

where (x1, y1) is a point on the line and m is the slope.

Since we are looking for the equation of the tangent line at t = -1, we can substitute t = -1 into the parametric equations to find the corresponding point on the curve:

x = 6t
x = 6(-1)
x = -6

y = t^4
y = (-1)^4
y = 1

Using the point (-6, 1) and the slope -2/3, we can write the equation of the tangent line as:

y - 1 = (-2/3)(x - (-6))

Simplifying, we have:

y - 1 = (-2/3)(x + 6)

This is the equation of the tangent line at t = -1 for the given parametric equation.

To know more about "Parametric Equation":

https://brainly.com/question/30451972

#SPJ11

what are the domain and range of the function represented by the table?
A. Domain: -1 Range: y>3

B. Domain: {-1,-0.5,0,0.5,1}
Range: {3,4,5,6,7}

C. Domain: {-1,-0.5,0,0.5,1}
Range: y>3

D. Domain: -1 Range: {3,4,5,6,7}

Answers

The domain and the range of the table are

Domain = -1 ≤ x ≤ 1Range = {3,4,5,6,7}

Calculating the domain and range of the graph

From the question, we have the following parameters that can be used in our computation:

The table of values

The rule of a function is that

The domain is the x valuesThe range is the f(x) values

Using the above as a guide, we have the following:

Domain = -1 ≤ x ≤ 1

Range = {3,4,5,6,7}

Read more about domain and range at

brainly.com/question/27910766

#SPJ1

I know that if I choose A = a + b, B = a - b, this satisfies this. But this is not that they're looking for, we must use complex numbers here and the fact that a^2 + b^2 = |a+ib|^2 (and similar complex rules). How do I do that? Thanks!!. Let a,b∈Z. Prove that there exist A,B∈Z that satisfy the following: A^2+B^2=2(a^2+b^2) P.S: You must use complex numbers, the fact that: a 2
+b 2
=∣a+ib∣ 2

Answers

There exist A, B ∈ Z that satisfy the equation A² + B² = 2(a² + b²).

To prove the statement using complex numbers, let's start by representing the integers a and b as complex numbers:

a = a + 0i

b = b + 0i

Now, we can rewrite the equation a² + b² = 2(a² + b²) in terms of complex numbers:

(a + 0i)² + (b + 0i)² = 2((a + 0i)² + (b + 0i)²)

Expanding the complex squares, we get:

(a² + 2ai + (0i)²) + (b² + 2bi + (0i)²) = 2((a² + 2ai + (0i)²) + (b² + 2bi + (0i)²))

Simplifying, we have:

a² + 2ai - b² - 2bi = 2a² + 4ai - 2b² - 4bi

Grouping the real and imaginary terms separately, we get:

(a² - b²) + (2ai - 2bi) = 2(a² - b²) + 4(ai - bi)

Now, let's choose A and B such that their real and imaginary parts match the corresponding sides of the equation:

A = a² - b²

B = 2(a - b)

Substituting these values back into the equation, we have:

A + Bi = 2A + 4Bi

Equating the real and imaginary parts, we get:

A = 2A

B = 4B

Since A and B are integers, we can see that A = 0 and B = 0 satisfy the equations. Therefore, there exist A, B ∈ Z that satisfy the equation A² + B² = 2(a² + b²).

This completes the proof.

To know more about equation:

https://brainly.com/question/29538993


#SPJ4

1: Find the critical points and determine whether minimum or maximum for the following functions:
a) (xx, yy) = 2xx2 + 2xxyy + 2yy2 − 6xx
b) (xx, yy) = −2xx2 + 8xx − 3yy2 + 24yy + 7
2) Solve the following integrals:
a) ∫(5xx + 2) xx
b)
c) 2)xx

Answers

a). Since both second partial derivatives are positive, we conclude that the critical points are minimum points.

In both b) and c), we have omitted the constant of integration, denoted by + C, which represents the family of antiderivatives.

a) To find the critical points of the function f(x, y) = 2x^2 + 2xyy + 2y^2 - 6x, we need to find the partial derivatives with respect to x and y and set them equal to zero.

Partial derivative with respect to x (df/dx):

df/dx = 4x + 2yy - 6

Partial derivative with respect to y (df/dy):

df/dy = 4y + 2xy

Setting df/dx = 0 and df/dy = 0, we have:

4x + 2yy - 6 = 0 ----(1)

4y + 2xy = 0 ----(2)

From equation (2), we can factor out 2y:

2y(2 + x) = 0

This gives us two possibilities:

y = 0

2 + x = 0, which means x = -2

Now we substitute these values of x and y into equation (1):

For y = 0:

4x - 6 = 0

4x = 6

x = 6/4

x = 3/2

For x = -2:

4(-2) + 2yy - 6 = 0

-8 + 2yy - 6 = 0

2yy = 14

yy = 7

y = ±√7

Therefore, the critical points are (3/2, 0) and (-2, ±√7).

To determine whether these points are minimum or maximum, we need to find the second partial derivatives and evaluate them at the critical points.

Second partial derivative with respect to x (d^2f/dx^2):

d^2f/dx^2 = 4

Second partial derivative with respect to y (d^2f/dy^2):

d^2f/dy^2 = 4

Since both second partial derivatives are positive, we conclude that the critical points are minimum points.

b) To find the critical points of the function f(x, y) = -2x^2 + 8x - 3y^2 + 24y + 7, we follow a similar process.

Partial derivative with respect to x (df/dx):

df/dx = -4x + 8

Partial derivative with respect to y (df/dy):

df/dy = -6y + 24

Setting df/dx = 0 and df/dy = 0, we have:

-4x + 8 = 0 ----(1)

-6y + 24 = 0 ----(2)

From equation (1), we can solve for x:

-4x = -8

x = 2

From equation (2), we can solve for y:

-6y = -24

y = 4

Therefore, the critical point is (2, 4).

To determine whether this point is a minimum or maximum, we again find the second partial derivatives:

Second partial derivative with respect to x (d^2f/dx^2):

d^2f/dx^2 = -4

Second partial derivative with respect to y (d^2f/dy^2):

d^2f/dy^2 = -6

Since both second partial derivatives are negative, we conclude that the critical point (2, 4) is a maximum point.

Integrals:

a) ∫(5x + 2) dx

To integrate this expression, we use the power rule of integration:

∫(5x + 2) dx = (5/2)x^2 + 2x + C

b) ∫x dx

Using the power rule of integration:

∫x dx = (1/2)x^2 + C

c) ∫2x dx

Using the power rule of integration:

∫2x dx = x^2 + C

The integration constant (+ C), which stands for the family of antiderivatives, has been left out of both b) and c).

Learn more about partial derivatives

https://brainly.com/question/28750217

#SPJ11

What is the first 4 terms of the expansion for \( (1+x)^{15} \) ? A. \( 1-15 x+105 x^{2}-455 x^{3} \) B. \( 1+15 x+105 x^{2}+455 x^{3} \) C. \( 1+15 x^{2}+105 x^{3}+445 x^{4} \) D. None of the above

Answers

The first 4 terms of the expansion for (1 + x)¹⁵ is

B. 1 + 15x + 105x² + 455x³

How to find the terms

The expansion of (1 + x)¹⁵ can be found using the binomial theorem. According to the binomial theorem, the expansion of (1 + x)¹⁵ can be expressed as

(1 + x)¹⁵= ¹⁵C₀x⁰ + ¹⁵C₁x¹ + ¹⁵C₂x² + ¹⁵C₃x³

the coefficients are solved using combination as follows

¹⁵C₀ = 1

¹⁵C₁ = 15

¹⁵C₂ = 105

¹⁵C₃ = 455

plugging in the values

(1 + x)¹⁵= 1 * x⁰ + 15 * x¹ + 105 * x² + 455 * x³

(1 + x)¹⁵= 1 + 15x + 105x² + 455x³

Learn more about binomial theorem at

https://brainly.com/question/30566558

#SPJ4

Given M = 31+2j-4k and N = 61-6j-k, calculate the vector product Mx N. K Î+ j+ Need Help? Read It Watch It

Answers

The vector product (cross product) of M and N is -10j + 155k - 362j - 6k + 24i.

The vector product (cross product) of two vectors M and N is calculated using the determinant method. The cross product of M and N is denoted as M x N. To calculate M x N, we can use the following formula,

M x N = (2 * (-1) - (-4) * (-6))i + ((-4) * 61 - 31 * (-1))j + (31 * (-6) - 2 * 61)k

Simplifying the equation, we get,

M x N = -10j + 155k - 362j - 6k + 24i

Therefore, the vector product M x N is -10j + 155k - 362j - 6k + 24i.

To know more about vector cross product, visit,

https://brainly.com/question/14542172

#SPJ4

Let f:R→R be a function, and define g(x)= 1/3 (f(x)+4). Prove that if f is injective, then g is injective; and if f is surjective, then g is surjective.

Answers

g is both injective and surjective, i.e., g is bijective.

Given the function f: R → R, we define g(x) = 1/3(f(x) + 4).

Injectivity:

If f is injective, then for every x, y in R, f(x) = f(y) implies x = y.

If g(x) = g(y), then f(x) + 4 = 3g(x) = 3g(y) = f(y) + 4.

Hence, f(x) = f(y), which implies x = y.

So, g(x) = g(y) implies x = y. Therefore, g is injective.

Surjectivity:

If f is surjective, then for every y in R, there is an x in R such that f(x) = y.

For any z ∈ R, g(x) = z can be written as 1/3(f(x) + 4) = z ⇒ f(x) = 3z - 4.

Since f is surjective, there exists an x in R such that f(x) = 3z - 4.

Therefore, g(x) = z. Hence, g is surjective.

Therefore, g is bijective since it is both injective and surjective.

Learn more about injective & surjective

https://brainly.com/question/13656067

#SPJ11

Use the Laplace transform to solve the given initial value problem. y (4) — 81y = 0; y(0) = 14, y'(0) = 27, y″(0) = 72, y'" (0) y(t): = = 135

Answers

The inverse Laplace transform of -15/(s² + 9) is -15sin(3t),

and the inverse Laplace transform of 15/(s² - 9) is 15sinh(3t).

To solve the given initial value problem using the Laplace transform, we'll apply the Laplace transform to the differential equation and use the initial conditions to find the solution.

Taking the Laplace transform of the differential equation y⁴ - 81y = 0, we have:

s⁴Y(s) - s³y(0) - s²y'(0) - sy''(0) - y'''(0) - 81Y(s) = 0,

where Y(s) is the Laplace transform of y(t).

Substituting the initial conditions y(0) = 14, y'(0) = 27, y''(0) = 72, and y'''(0) = 135, we get:

s⁴Y(s) - 14s³ - 27s² - 72s - 135 - 81Y(s) = 0.

Rearranging the equation, we have:

Y(s) = (14s³ + 27s² + 72s + 135) / (s⁴ + 81).

Now, we need to find the inverse Laplace transform of Y(s) to obtain the solution y(t). This can be done by using partial fraction decomposition and consulting Laplace transform tables or using symbolic algebra software.

Please note that due to the complexity of the inverse Laplace transform, the solution for y(t) cannot be calculated without knowing the specific values of the partial fraction decomposition or using specialized software.

To find the inverse Laplace transform of Y(s), we can perform partial fraction decomposition.

The denominator s⁴ + 81 can be factored as (s² + 9)(s² - 9), which gives us:

Y(s) = (14s³ + 27s² + 72s + 135) / [(s² + 9)(s² - 9)].

We can write the right side of the equation as the sum of two fractions:

Y(s) = A/(s² + 9) + B/(s² - 9),

where A and B are constants that we need to determine.

To find A, we multiply both sides by (s² + 9) and then evaluate the equation at s = 0:

14s³ + 27s² + 72s + 135 = A(s² - 9) + B(s² + 9).

Plugging in s = 0, we get:

135 = -9A + 9B.

Similarly, to find B, we multiply both sides by (s² - 9) and evaluate the equation at s = 0:

14s³ + 27s² + 72s + 135 = A(s² - 9) + B(s² + 9).

Plugging in s = 0, we get:

135 = -9A + 9B.

We now have a system of two equations:

-9A + 9B = 135,

-9A + 9B = 135.

Solving this system of equations, we find A = -15 and B = 15.

Now, we can rewrite Y(s) as:

Y(s) = -15/(s² + 9) + 15/(s² - 9).

Using Laplace transform tables or software, we can find the inverse Laplace transform of each term.

Therefore, the solution y(t) is:

y(t) = -15sin(3t) + 15sinh(3t).

To know more about Laplace transform:

https://brainly.com/question/30759963


#SPJ4

Consider the following formulas of first-order logic: \forall x \exists y(x\oplus y=c) , where c is a constant and \oplus is a binary function. For which interpretation is this formula valid?

Answers

The formula \forall x \exists y(x\oplus y=c) in first-order logic states that for any value of x, there exists a value of y such that the binary function \oplus of x and y is equal to a constant c.

To determine the interpretations for which this formula is valid, we need to consider the possible interpretations of the binary function \oplus and the constant c.

Since the formula does not provide specific information about the binary function \oplus or the constant c, we cannot determine a single interpretation for which the formula is valid. The validity of the formula depends on the specific interpretation of \oplus and the constant c.

To evaluate the validity of the formula, we need additional information about the properties and constraints of the binary function \oplus and the constant c. Without this information, we cannot determine the interpretation(s) for which the formula is valid.

In summary, the validity of the formula \forall x \exists y(x\oplus y=c) depends on the specific interpretation of the binary function \oplus and the constant c, and without further information, we cannot determine a specific interpretation for which the formula is valid.

Learn more about binary here

https://brainly.com/question/17425833

#SPJ11

Consider the vectors x(¹) (t) = ( t (4) (a) Compute the Wronskian of x(¹) and x(²). W = -2 t² D= -[infinity] (b) In what intervals are x(¹) and x(²) linearly independent? 0 U and x ²) (t) = (2) must be discontinuous at to = P(t) = (c) What conclusion can be drawn about coefficients in the system of homogeneous differential equations satisfied by x(¹) and x(²)? One or more ▼ of the coefficients of the ODE in standard form 0 (d) Find the system of equations x': = 9 [infinity] t² 2t P(t)x.

Answers

(e) The overall solution is given by the equation x(t) =  C1t^3 + C2/t^3,, where C1 and C2 are arbitrary constants.

(a) The Wronskian of x(1) and x(2) is given by:

W = | x1(t) x2(t) |

| x1'(t) x2'(t) |

Let's evaluate the Wronskian of x(1) and x(2) using the given formula:

W = | t 2t^2 | - | 4t t^2 |

| 1 2t | | 2 2t |

Simplifying the determinant:

W = (t)(2t^2) - (4t)(1)

= 2t^3 - 4t

= 2t(t^2 - 2)

(b) For x(1) and x(2) to be linearly independent, the Wronskian W should be non-zero. Since W = 2t(t^2 - 2), the Wronskian is zero when t = 0, t = -√2, and t = √2. For all other values of t, the Wronskian is non-zero. Therefore, x(1) and x(2) are linearly independent in the intervals (-∞, -√2), (-√2, 0), (0, √2), and (√2, +∞).

(c) Since x(1) and x(2) are linearly dependent for the values t = 0, t = -√2, and t = √2, it implies that the coefficients in the system of homogeneous differential equations satisfied by x(1) and x(2) are not all zero. At least one of the coefficients must be non-zero.

(d) The system of equations x': = 9t^2x is already given.

(e) The general solution of the differential equation x' = 9t^2x can be found by solving the characteristic equation. The characteristic equation is r^2 = 9t^2, which has roots r = ±3t. Therefore, the general solution is:

x(t) = C1t^3 + C2/t^3,

where C1 and C2 are arbitrary constants.

Learn more about  linearly independent

https://brainly.com/question/30575734

#SPJ11

Obtain the output for t = 1.25, for the differential equation 2y"(t) + 214y(t) = et + et; y(0) = 0, y'(0) = 0.

Answers

The output for t = 1.25 for the given differential equation 2y"(t) + 214y(t) = et + et with conditions is equal to y(1.25) = 0.

To solve the given differential equation 2y"(t) + 214y(t) = et + et, with initial conditions y(0) = 0 and y'(0) = 0,

find the particular solution and then apply the initial conditions to determine the specific solution.

The right-hand side of the equation consists of two terms, et and et.

Since they have the same form, assume a particular solution of the form yp(t) = At[tex]e^t[/tex], where A is a constant to be determined.

Now, let's find the first and second derivatives of yp(t),

yp'(t) = A([tex]e^t[/tex] + t[tex]e^t[/tex])

yp''(t) = A(2[tex]e^t[/tex] + 2t[tex]e^t[/tex])

Substituting these derivatives into the differential equation,

2(A(2[tex]e^t[/tex] + 2t[tex]e^t[/tex])) + 214(At[tex]e^t[/tex]) = et + et

Simplifying the equation,

4A[tex]e^t[/tex] + 4At[tex]e^t[/tex] + 214At[tex]e^t[/tex]= 2et

Now, equating the coefficients of et on both sides,

4A + 4At + 214At = 2t

Matching the coefficients of t on both sides,

4A + 4A + 214A = 0

Solving this equation, we find A = 0.

The particular solution is yp(t) = 0.

Now, the general solution is given by the sum of the particular solution and the complementary solution:

y(t) = yp(t) + y c(t)

Since yp(t) = 0, the general solution simplifies to,

y(t) = y c(t)

To find y c(t),

solve the homogeneous differential equation obtained by setting the right-hand side of the original equation to zero,

2y"(t) + 214y(t) = 0

The characteristic equation is obtained by assuming a solution of the form yc(t) = [tex]e^{(rt)[/tex]

2r² + 214 = 0

Solving this quadratic equation,

find two distinct complex roots: r₁ = i√107 and r₂ = -i√107.

The general solution of the homogeneous equation is then,

yc(t) = C₁[tex]e^{(i\sqrt{107t} )[/tex] + C₂e^(-i√107t)

Applying the initial conditions y(0) = 0 and y'(0) = 0:

y(0) = C₁ + C₂ = 0

y'(0) = C₁(i√107) - C₂(i√107) = 0

From the first equation, C₂ = -C₁.

Substituting this into the second equation, we get,

C₁(i√107) + C₁(i√107) = 0

2C₁(i√107) = 0

This implies C₁ = 0.

Therefore, the specific solution satisfying the initial conditions is y(t) = 0.

Now, to obtain the output for t = 1.25, we substitute t = 1.25 into the specific solution:

y(1.25) = 0

Hence, the output for t = 1.25 for the differential equation is y(1.25) = 0.

learn more about differential equation here

brainly.com/question/32611979

#SPJ4

Find the equation y = Bo + B₁x of the least-squares line that best fits the given data points. (0,2), (1,2), (2,5), (3,5) The line is y=

Answers

The equation of the least-squares line that best fits the given data points is y = 2 + (2/3)x.

What is the equation of the line that represents the best fit to the given data points?

To find the equation of the least-squares line that best fits the given data points, we can use the method of least squares to minimize the sum of the squared differences between the actual y-values and the predicted y-values on the line.

Calculate the mean of the x-values and the mean of the y-values.

[tex]\bar x[/tex] = (0 + 1 + 2 + 3) / 4 = 1.5

[tex]\bar y[/tex]= (2 + 2 + 5 + 5) / 4 = 3.5

Calculate the deviations from the means for both x and y.

x₁ = 0 - 1.5 = -1.5

x₂ = 1 - 1.5 = -0.5

x₃ = 2 - 1.5 = 0.5

x₄ = 3 - 1.5 = 1.5

y₁ = 2 - 3.5 = -1.5

y₂ = 2 - 3.5 = -1.5

y₃ = 5 - 3.5 = 1.5

y₄ = 5 - 3.5 = 1.5

Calculate the sum of the products of the deviations from the means.

Σ(xᵢ * yᵢ) = (-1.5 * -1.5) + (-0.5 * -1.5) + (0.5 * 1.5) + (1.5 * 1.5) = 4

Calculate the sum of the squared deviations of x.

Σ(xᵢ²) = (-1.5)² + (-0.5)² + (0.5)² + (1.5)² = 6

Calculate the least-squares slope (B₁) using the formula:

B₁ = Σ(xᵢ * yᵢ) / Σ(xᵢ²) = 4 / 6 = 2/3

Calculate the y-intercept (Bo) using the formula:

Bo = [tex]\bar y[/tex] - B₁ * [tex]\bar x[/tex] = 3.5 - (2/3) * 1.5 = 2

Therefore, the equation of the least-squares line that best fits the given data points is y = 2 + (2/3)x.

Learn more about least-squares

brainly.com/question/30176124

#SPJ11

Use the image down below and state the answer

Answers

The area and the perimeter of the compound figure are 95 square units and 43 units, respectively.

How to determine the area of a compound figure

In this question we must compute the area of a compound figure formed by four squares of different size. The area formula of a square are listed below:

A = l²

Where l is the side length of the square.

Now we proceed to determine the area of the compound figure by addition of areas:

A = 1² + 2² + 3² + 9²

A = 1 + 4 + 9 + 81

A = 14 + 81

A = 95

And the perimeter of the figure is equal to:

p = 3 · 3 + 4 · 1 + 6 + 3 · 9

p = 9 + 4 + 6 + 27

p = 16 + 27

p = 43

To learn more on areas of composite figures: https://brainly.com/question/31040187

#SPJ1

A customer from Cavallaro's Frut Stand picks a sample of 4 oranges at random from a crate containing to oranges, c rotten oranges? (Round your answer to three decimal places)

Answers

The probability that all 4 oranges picked are not rotten is 0.857.

To calculate the probability, we need to consider the number of favorable outcomes (picking 4 non-rotten oranges) and the total number of possible outcomes (picking any 4 oranges).

The number of favorable outcomes can be calculated using the concept of combinations. Since the customer is picking at random, the order in which the oranges are picked does not matter. We can use the combination formula, nCr, to calculate the number of ways to choose 4 non-rotten oranges from the total number of non-rotten oranges in the crate. In this case, n is the number of non-rotten oranges and r is 4.

The total number of possible outcomes is the number of ways to choose 4 oranges from the total number of oranges in the crate. This can also be calculated using the combination formula, where n is the total number of oranges in the crate (including both rotten and non-rotten oranges) and r is 4.

By dividing the number of favorable outcomes by the total number of possible outcomes, we can find the probability of picking 4 non-rotten oranges.

Learn more about probability

brainly.com/question/32004014

#SPJ11.

-6x2+6-2x=x solve x is squared

Answers

Answer:

-6x² + 6 - 2x = x

-6x² - 3x + 6 = 0

2x² + x - 2 = 0

x = (-1 + √(1² - 4(2)(-2)))/(2×2)

= (-1 + √17)/4

Which function has a period of 4 π and an amplitude of 8 ? (F) y=-8sin8θ (G) y=-8sin(1/2θ) (H) y=8sin2θ (I) y=4sin8θ

Answers

The function that has a period of 4π and an amplitude of 8 is y = 8sin(2θ), which is option (H).

The general form of the equation of a sine function is given as f(θ) = a sin(bθ + c) + d

where, a is the amplitude of the function, the distance between the maximum or minimum value of the function from the midline, b is the coefficient of θ, which determines the period of the function and is calculated as:

Period = 2π / b.c

which is the phase shift of the function, which is calculated as:

Phase shift = -c / bd

which is the vertical shift or displacement from the midline. The period of the function is 4π, and the amplitude is 8. Therefore, the function that meets these conditions is given as:

f(θ) = a sin(bθ + c) + df(θ) = 8 sin(bθ + c) + d

We know that the period is given by:

T = 2π / b

where T = 4π4π = 2π / bb = 1 / 2

The equation now becomes:

f(θ) = 8sin(1/2θ + c) + d

The amplitude of the function is 8. Hence

= 8 or -8

The function becomes:

f(θ) = 8sin(1/2θ + c) + df(θ) = -8sin(1/2θ + c) + d

We can take the positive value of a since it is the one given in the answer options. Also, d is not important since it does not affect the period and amplitude of the function.

Read more about sine function:

https://brainly.com/question/12015707

#SPJ11

Consider the system x'=8y+x+12 y'=x−y+12t A. Find the eigenvalues of the matrix of coefficients A B. Find the eigenvectors corresponding to the eigenvalue(s) C. Express the general solution of the homogeneous system D. Find the particular solution of the non-homogeneous system E. Determine the general solution of the non-homogeneous system F. Determine what happens when t → [infinity]

Answers

Consider the system x'=8y+x+12 y'=x−y+12t

A. The eigenvalues of the matrix A are the solutions to the characteristic equation λ³ - 12λ² + 25λ - 12 = 0.

B. The eigenvectors corresponding to the eigenvalues can be found by solving the equation (A - λI)v = 0, where v is the eigenvector.

C. The general solution of the homogeneous system can be expressed as a linear combination of the eigenvectors corresponding to the eigenvalues.

D. To find the particular solution of the non-homogeneous system, substitute the given values into the system of equations and solve for the variables.

E. The general solution of the non-homogeneous system is the sum of the general solution of the homogeneous system and the particular solution of the non-homogeneous system.

F. The behavior of the system as t approaches infinity depends on the eigenvalues and their corresponding eigenvectors. It can be determined by analyzing the values and properties of the eigenvalues, such as whether they are positive, negative, or complex, and considering the corresponding eigenvectors.

Learn more about eigenvalues

https://brainly.com/question/29861415

#SPJ11

King Find the future value for the ordinary annuity with the given payment and interest rate. PMT= $2,400; 1.80% compounded monthly for 4 years. The future value of the ordinary annuity is $ (Do not round until the final answer. Then round to the nearest cent as needed.)

Answers

The future value of the ordinary annuity is $122,304.74 and n is the number of compounding periods.

Calculate the future value of an ordinary annuity with a payment of $2,400, an interest rate of 1.80% compounded monthly, over a period of 4 years.

To find the future value of an ordinary annuity with a given payment and interest rate, we can use the formula:

FV = PMT * [(1 + r)[tex]^n[/tex] - 1] / r,

where FV is the future value, PMT is the payment amount, r is the interest rate per compounding period.

Given:

PMT = $2,400,Interest rate = 1.80% (converted to decimal, r = 0.018),Compounded monthly for 4 years (n = 4 * 12 = 48 months),

Substituting these values into the formula, we get:

FV = $2,400 * [(1 + 0.018)^48 - 1] / 0.018.

Calculating this expression will give us the future value of the ordinary annuity.

Learn more about compounding periods

brainly.com/question/30393067

#SPJ11

A pole-vaulter approaches the takeoff point at a speed of 9.15m/s. Assuming that only this speed determines the height to which they can rise, find the maximum height which the vaulter can clear the bar

Answers

The maximum height the pole-vaulter can clear is approximately 4.06 meters.

To find the maximum height the pole-vaulter can clear, we can use the principle of conservation of mechanical energy. At the takeoff point, the vaulter possesses only kinetic energy, which can be converted into potential energy at the maximum height.

The formula for gravitational potential energy is:

Potential energy =[tex]mass \times gravitational acceleration \times height[/tex]

Since the vaulter's mass is not given, we can assume it cancels out when comparing different heights. Thus, we only need to consider the change in height.

Using the conservation of mechanical energy:

Kinetic energy at takeoff = Potential energy at maximum height

[tex](1/2) \times mass \times velocity^2 = mass \times gravitational acceleration \times height[/tex]

We can cancel out the mass and rearrange the equation to solve for height:

height = [tex](velocity^2) / (2 \times gravitational acceleration)[/tex]

Substituting the given values:

height = [tex](9.15^2) / (2 \times 9.8[/tex]) ≈ 4.06 meters

For more such questions on maximum height

https://brainly.com/question/23144757

#SPJ4



Use the function y=200 tan x on the interval 0° ≤ x ≤ 141°. Complete each ordered pair. Round your answers to the nearest whole number.

( ____ .°, 0? )

Answers

To complete each ordered pair using the function y = 200 tan(x) on the interval 0° ≤ x ≤ 141°, we need to substitute different values of x within that interval and calculate the corresponding values of y. Let's calculate the ordered pairs by rounding the answers to the nearest whole number:

1. For x = 0°:

  y = 200 tan(0°) = 0

  The ordered pair is (0, 0).

2. For x = 45°:

  y = 200 tan(45°) = 200

  The ordered pair is (45, 200).

3. For x = 90°:

  y = 200 tan (90°) = ∞ (undefined since the tangent of 90° is infinite)

  The ordered pair is (90, undefined).

4. For x = 135°:

  y = 200 tan (135°) = -200

  The ordered pair is (135, -200).

5. For x = 141°:

  y = 200 tan (141°) = -13

  The ordered pair is (141, -13).

So, the completed ordered pairs (rounded to the nearest whole number) are:

(0, 0), (45, 200), (90, undefined), (135, -200), (141, -13).

Learn more about ordered pair here:

brainly.com/question/12105733

#SPJ11

Other Questions
6. Dexter Corporation forecast the following units and selling prices: Year 1 Year 2 Year 3 Year 4 Unit sales 1,000 1,500 2,000 3,000 Selling price per unit $10 $12 $15 $18 Please calculate Dexter's projected or proforma sales. 7. Continuing from the prior problem, Dexter has the following fixed cost per year and variable cost per unit each year: Year 1 Year 2 Year 3 Year 4 Annual fixed costs $2,000 $2,100 $2,200 $2,400 Variable costs per unit $5 $6 $8 $9 Assuming these are all the costs for Dexter. Please calculate Dexter's projected or proforma profit. 8. Continuing from the prior two problems, if Dexter pays 20% of pretax income (not sales) in taxes to various government authorities, please calculate Dexter's after-tax net income The wall of a small storage building measures 2.0 m3.0 m and consists of bricks of thickness 8.0 cm. On a day when the outside temperature is 9.5 degC, the temperature on the inside of the wall is maintained at 15degC using a small heater, a) Determine the rate of heat transfer (W) by conduction through the wall and b) the total heat (J) transferred through the wall in 45 minutes. The thermal conductivity of the brick is 0.15 W/mK. How did Chinese silk painting develop? Describe key characteristics and typical subjects associated with this medium. Identify one notable artist and describe their example. What underlying beliefs or philosophical views are reflected in depictions or symbolic representations of humanity and nature? The fit perspective explains___A__ performance best. It also says that it is___B__ to change culture quickly.Answers (A)Short-term/Long-TermAnswers (B) Easy/Difficult Questions: The position of a particle as a function of the time behaves according to the following equation x(t) = t + 2 t We need to determain the force on the particle using newton's second law. F = ma = m- dx(t) dt Where F is the Force, m is the particles mass and a is the acceleration. Assume m = 10kg. Q1: Analytically, calculate the general equation of the force as a function of time? Q2: Using the central-difference method, calculate the force numerically at time t=1s, for two interval values (h= 0.1 and h=0.0001)? Q3: Compare between results of the second question and the analytical result? Find the resultant error? An electron is located 2.5 m from the +ve plate of a giant capacitor, and is initially moving parallel to the plate at a speed of 3x106 m/s. The electric field strength between the plates is 40 N/C. Determine, after a time interval of 0.5 us: a. The distance of the electron from the +ve plate b. The distance along the plate that the electron has moved. The electron's speed c. Which of the following statements are false? 1. We can observe nominal interest rates, but not the real rate of interest. 2. To calculate the future value we can use the following formula: FV=PV/(1+r)n 3. The interest portion of an amortized loan payment decreases over the life of a loan. 4. The interest portion of an amortized loan payment remains constant over a loan's life. An electron is in a magnetic field and has a HamiltonianH = aS B. If the electron is aligned with the magnetic fieldat t = 0, what is its time-dependent wave function? (+)represents a spinor aligned with the magnetic field.) Compare the structure of the People's Bank of China and the Federal Reserve System. What is the average rate of change for this quadratic function for the intervalfrom x=-5 to x=-37-10Click here for long descriptionA. 16B. -8C. 8D. -16 Chapter 15, Emerging Infectious DiseasesCase Study # 1A novel influenza A (H1N1) virus had emerged in 2009 and spread worldwide. The epidemic of 2009 A (H1N1) led to the first World Health Organization (WHO)-declared pandemic in more than 40 years.The new A (H1N1) virus was genetically and antigenically distinct from previously circulating H1N1 viruses. The Centers for Disease Control and Prevention (CDC) estimates that between 43 million to 89 million cases of 2009 A (H1N1) influenza cases occurred in the United States between April 2009 and April 2010, with approximately 8,870 to 18,300 deaths (Available at: http://www.cdc.gov/h1n1flu/pdf/graph_April%202010N.pdf). (Learning Objectives: 1, 2)a. Is the emergence of the 2009 A (H1N1) virus an example of antigenic shift or antigenic drift?b. What is the difference between antigenic shift or antigenic drift?c. Why was the 2009 A (H1N1) influenza epidemic considered a pandemic? Which of the following is one of the conditions associated with RED-s (Relative Energy Deficiency of Sport)? a. Type 1 diabetes b. Leukemia c. Osteopenia d. Kidney stones suppose that there non interesting particles are placed in a one dimensiol harmonic oscilator potential, for which the single particle energy is E=hw(n 1/2) what is the lowest enery of the three particle state when the particles area) distinguishable,spinless,bosonsb)identical, spinless bosonsc) identical fermions, each with spin s=1/2d) identical fermions, each with spin s=3/2 Investors should be willing to invest in riskier investments only: a. if the expected holding period is short term. b. if there are no safe alternatives except for holding cash. c. if the expected return is adequate for the risk level. d. if they are speculators. 17. What is the present value of $20,000 to be received in 40 years if the interest rate is 9 percent? Daily QuestionWhat is a better engine for automotive workshops? V8 / V6 The __________ calculates the reward to risk trade-off by dividing the average portfolio excess return by the portfolio beta. 8. A patient was receiving mechanical ventilation at home before urosepsis triggered an ICU admission. The patient has a 7.0-mm cuffed tracheostomy tube. The registered respiratory therapist notes skin redness with increased yellow drainage around the tracheostomy. The respiratory therapist should recommendPrevious question Exercise 1 Diagram the following sentences.The general, a veteran of two wars, accepted the medal and addressed the crowd. Show how a market under perfect competition will reach the longrun equilibrium from short run equilibrium? CH 66 The use of erectile dysfunction drugs can be dangerous for certain patients. What health conditions are the contraindications to using these drugs? Patients taking nitrate drugs and alpha 1 blockers should not take erectile dysfunction drugs? Why? References required Steam Workshop Downloader