Find the value of x, y, and z in the parallelogram below.
H=
I
(2-3)
(3x-6)
y =
Z=
108⁰
(y-9)


Find The Value Of X, Y, And Z In The Parallelogram Below.H=I(2-3)(3x-6)y =Z=108(y-9)

Answers

Answer 1

The value of x, y and z in the interior angles of the parallelogram is 38, 81 and 75.

What is the value of x, y and z?

A parallelogram is simply quadrilateral with two pairs of parallel sides.

Opposite angles of a parallelogram are equal.

Consecutive angles in a parallelogram are supplementary.

From the diagram, angle ( 3x - 6 ) is opposite angle 108 degrees.

Since opposite angles of a parallelogram are equal.

( 3x - 6 ) = 108

Solve for x:

3x - 6 = 108

3x = 108 + 6

3x = 114

x = 114/3

x = 38

Also, consecutive angles in a parallelogram are supplementary.

Hence:

108 + ( y - 9 ) = 180

y + 108 - 9 = 180

y + 99 = 180

y = 180 - 99

y = 81

And

108 + ( z - 3 ) = 180

z + 108 - 3 = 180

z + 105 = 180

z = 180 - 105

z = 75

Therefore, the value of z is 75.

Learn more about parallelogram here: https://brainly.com/question/32441125

#SPJ1


Related Questions

If n is a positive integer, then n4 - n is divisible by 4.
[Proof of Exhaustion]

Answers

i. n^4 - n is divisible by 4 when n is even.

ii. we can conclude that n^4 - n is divisible by 4 for all positive integers n, by exhaustion.

Let's assume n to be a positive integer. Therefore, n can be written in the form of either (2k + 1) or (2k).

Now, n^4 can be expressed as (n^2)^2. Therefore, we can write:

n^4 - n = (n^2)^2 - n

The above expression can be rewritten by using the even and odd integers as:

n^4 - n = [(2k)^2]^2 - (2k) or [(2k + 1)^2]^2 - (2k + 1)

Now, to prove that n^4 - n is divisible by 4, we need to check two cases:

i. Case 1: When n is even

n^4 - n = [(2k)^2]^2 - (2k) = [4(k^2)]^2 - 2k

Hence, n^4 - n is divisible by 4 when n is even.

ii. Case 2: When n is odd

n^4 - n = [(2k + 1)^2]^2 - (2k + 1) = [4(k^2 + k)]^2 - (2k + 1)

Hence, n^4 - n is divisible by 4 when n is odd.

Therefore, we can conclude that n^4 - n is divisible by 4 for all positive integers n, by exhaustion.

Learn more about positive integer

https://brainly.com/question/18380011

#SPJ11

What are the minimum, first quartile, median, third quartile, and maximum of the data set? 20, 70, 13, 15, 23, 17, 40, 51

Answers

To find the minimum, first quartile, median, third quartile, and maximum of the given dataset: 20, 70, 13, 15, 23, 17, 40, 51, you need to arrange the data in ascending order first:

13, 15, 17, 20, 23, 40, 51, 70

Now, let's determine the values:

Minimum: The smallest value in the dataset is 13.

First Quartile: This is the median of the lower half of the dataset. In this case, the lower half is {13, 15, 17}. Since the number of elements is odd, the median is the middle value, which is 15.

Median: The median is the middle value of the dataset when it is arranged in ascending order. In this case, the dataset has 8 elements, so the median is the average of the two middle values, which are 20 and 23. Thus, the median is (20 + 23) / 2 = 21.5.

Third Quartile: This is the median of the upper half of the dataset. In this case, the upper half is {40, 51, 70}. Again, the number of elements is odd, so the median is the middle value, which is 51.

Maximum: The largest value in the dataset is 70.

To summarize:
- Minimum: 13
- First Quartile: 15
- Median: 21.5
- Third Quartile: 51
- Maximum: 70

Two models R₁ and R₂ are given for revenue (in millions of dollars) for a corporation. Both models are estimates of revenues from 2020 throu 2025, with t = 0 corresponding to 2020.
R₁ = 7.28+0.25t + 0.02t^2
R₂ = 7.28+0.1t + 0.01t^2
Which model projects the greater revenue?
a)R, projects the greater revenue.
b)R₂ projects the greater revenue.
How much more total revenue does that model project over the six-year period? (Round your answer to three decimal places.)
million

Answers

The required answer is R₁ projects 1.26 million dollars more in total revenue over the six-year period compared to R₂. To determine which model projects the greater revenue, we can compare the coefficients of the quadratic terms in both models R₁ and R₂.

In model R₁, the coefficient of the quadratic term is 0.02, while in model R₂, the coefficient is 0.01. Since the coefficient in R₁ is greater than the coefficient in R₂, this means that the quadratic term in R₁ has a greater impact on the revenue projection compared to R₂.
To understand this further, let's compare the behavior of the quadratic terms in both models. The quadratic term, t^2, represents the square of the time (t) in years. As time increases, the value of t^2 also increases, resulting in a greater impact on the revenue projection.
Since the coefficient of the quadratic term in R₁ is greater than that of R₂, R₁ will project greater revenue over the six-year period.
To calculate how much more total revenue R₁ projects over the six-year period, we can subtract the total revenue projected by R₂ from the total revenue projected by R₁.
Using the given models, we can calculate the total revenue over the six-year period for each model by substituting t = 6 into the equations:
For R₁: R₁ = 7.28 + 0.25(6) + 0.02(6)^2
For R₂: R₂ = 7.28 + 0.1(6) + 0.01(6)^2
Evaluating these equations, we find:
R₁ = 7.28 + 1.5 + 0.72 = 9.5 million dollars
R₂ = 7.28 + 0.6 + 0.36 = 8.24 million dollars
To find the difference in revenue, we subtract R₂ from R₁:
Difference = R₁ - R₂ = 9.5 - 8.24 = 1.26 million dollars
Therefore, R₁ projects 1.26 million dollars more in total revenue over the six-year period compared to R₂.

Learn more about a quadratic term:

https://brainly.com/question/28323845

#SPJ11

In the lectures we discussed Project STAR, in which students were randomly assigned to classes of different size. Suppose that there was anecdotal evidence that school principals were successfully pressured by some parents to place their children in the small classes. How would this compromise the internal validity of the study? Suppose that you had data on the original random assignment of each student before the principal's intervention (as well as the classes in which students were actually enrolled). How could you use this information to restore the internal validity of the study?

Answers

Parental pressure compromising random assignment compromises internal validity. Analyzing original assignment data can help restore internal validity through "as-treated" analysis or statistical techniques like instrumental variables or propensity score matching.

If school principals were pressured by parents to place their children in small classes, it would compromise the internal validity of the study. This is because the random assignment of students to different class sizes, which is essential for establishing a causal relationship between class size and student outcomes, would be undermined.

To restore the internal validity of the study, the data on the original random assignment of each student can be utilized. By analyzing this data and comparing it with the actual classes in which students were enrolled, researchers can identify the cases where the random assignment was compromised due to parental pressure.

One approach is to conduct an "as-treated" analysis, where the effect of class size is evaluated based on the actual classes students attended rather than the originally assigned classes. This analysis would involve comparing the outcomes of students who ended up in small classes due to parental pressure with those who ended up in small classes as per the random assignment. By properly accounting for the selection bias caused by parental pressure, researchers can estimate the causal effect of class size on student outcomes more accurately.

Additionally, statistical techniques such as instrumental variables or propensity score matching can be employed to address the issue of non-random assignment and further strengthen the internal validity of the study. These methods aim to mitigate the impact of confounding variables and selection bias, allowing for a more robust analysis of the relationship between class size and student outcomes.

Learn more about internal validity here :-

https://brainly.com/question/33240335

#SPJ11



Quadrilateral A B C D is a rhombus. Find the value or measure.

If m∠BCD=54 , find m∠BAC .

Answers

In a rhombus, opposite angles are congruent. Therefore, if we know that m∠BCD is 54 degrees, then m∠BAD (which is opposite to m∠BCD) is also 54 degrees.

In a rhombus, all sides are congruent, and opposite angles are congruent. Since we are given that m∠BCD is 54 degrees, we can conclude that m∠BAD is also 54 degrees because they are opposite angles in the rhombus.
This property of opposite angles being congruent in a rhombus can be proven using the properties of parallel lines and transversals. By drawing diagonal AC in the rhombus, we create two pairs of congruent triangles (ABC and ACD) with the diagonal as a common side. Since corresponding parts of congruent triangles are congruent, we can conclude that m∠BAC is congruent to m∠ACD, which is opposite to m∠BCD.
Therefore, in the given rhombus, m∠BAC is also 54 degrees, making it congruent to m∠BCD.

Learn more about rhombus here:

https://brainly.com/question/27870968

#SPJ11

HELP ME PLEASE WHAT IS THIS I NEED HELP FAST

Answers

Answer:

f(x) = (x/2) - 3, g(x) = 4x² + x - 4

(f + g)(x) = f(x) + g(x) = 4x² + (3/2)x - 7

The correct answer is A.

The indicated function y₁(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, x₂ = 1₁ (4) 11/200) e-SP(x) dx x²(x) -dx (5) as instructed, to find a second solution y₂(x). y" + 2y' + y = 0; y₁ = xe-x Y₂

Answers

The second solution y₂(x) for the given differential equation y" + 2y' + y = 0, with y₁(x) = xe^(-x), is y₂(x) = x^2e^(-x).

To find the second solution y₂(x), we can use the reduction of order method. Let's assume y₂(x) = v(x)y₁(x), where v(x) is a function to be determined. Taking the derivatives of y₂(x), we have:

y₂'(x) = v'(x)y₁(x) + v(x)y₁'(x)

y₂''(x) = v''(x)y₁(x) + 2v'(x)y₁'(x) + v(x)y₁''(x)

Substituting these derivatives into the given differential equation, we get:

v''(x)y₁(x) + 2v'(x)y₁'(x) + v(x)y₁''(x) + 2(v'(x)y₁(x) + v(x)y₁'(x)) + v(x)y₁(x) = 0

Since y₁(x) = xe^(-x) satisfies the differential equation, we can substitute it into the above equation:

v''(x)xe^(-x) + 2v'(x)e^(-x) + v(x)(-xe^(-x)) + 2(v'(x)xe^(-x) + v(x)e^(-x)) + v(x)xe^(-x) = 0

Simplifying this equation, we get:

v''(x)xe^(-x) + 2v'(x)e^(-x) - v(x)xe^(-x) + 2v'(x)xe^(-x) + 2v(x)e^(-x) + v(x)xe^(-x) = 0

Rearranging the terms, we have:

(v''(x) + 3v'(x) + v(x))xe^(-x) + (2v'(x) + 2v(x))e^(-x) = 0

Since e^(-x) ≠ 0 for all x, we can simplify further:

v''(x) + 3v'(x) + v(x) + 2v'(x) + 2v(x) = 0

v''(x) + 5v'(x) + 3v(x) = 0

This is a linear homogeneous second-order differential equation. We can solve it using the characteristic equation:

r² + 5r + 3 = 0

Solving this quadratic equation, we find two distinct roots: r₁ = -1 and r₂ = -3. Therefore, the general solution of v(x) is given by:

v(x) = C₁e^(-x) + C₂e^(-3x)

Substituting y₁(x) = xe^(-x) and v(x) into the expression for y₂(x) = v(x)y₁(x), we get:

y₂(x) = (C₁e^(-x) + C₂e^(-3x))xe^(-x)

      = C₁xe^(-2x) + C₂xe^(-4x)

We can choose C₁ = 0 and C₂ = 1 to simplify the expression further:

y₂(x) = xe^(-4x)

Therefore, the second solution to the given differential equation is y₂(x) = x^2e^(-x).

Learn more about Reduction of Order.
brainly.com/question/30784285
#SPJ11

Please draw the ray diagram! A 3.0 cm-tall object is placed at a distance of 20.0 cm from a convex mirror that has a focal length of - 60.0 cm. Calculate the position and height of the image. Use the method of ray tracing to sketch the image. State whether the image is formed in front or behind the mirror, and whether the image is upright or inverted.

Answers

The image is formed behind the mirror, and the image is upright.

Given data: Object height, h = 3.0 cm Image distance, v = ? Object distance, u = -20.0 cmFocal length, f = -60.0 cmUsing the lens formula, the image distance is given by;1/f = 1/v - 1/u

Putting the values in the above equation, we get;1/-60 = 1/v - 1/-20

Simplifying the above equation, we get;v = -40 cm

This negative sign indicates that the image is formed behind the mirror, as the object is placed in front of the mirror.

Hence, the image is virtual and erect. Using magnification formula;M = -v/uWe get;M = -(-40) / -20M = 2Hence, the height of the image is twice the height of the object.

The height of the image is given by;h' = M × hh' = 2 × 3h' = 6 cm Now, let's draw the ray diagram:

Thus, the position of the image is -40.0 cm and the height of the image is 6 cm.

The image is formed behind the mirror, and the image is upright.

To know more about mirror visit:

brainly.com/question/24600056

#SPJ11

Consider the set A = {a + bx + cx² + dx³; b + c = -1, a, b, c, de R}. Determine whether the set A is a subspace of P3, where P3 is the set of polynomials of degree less than or equal to 3.

Answers

A is not closed under scalar multiplication.

Since A fails to satisfy all three conditions for a subspace, we conclude that A is not a subspace of P3.

To determine whether A is a subspace of P3, we need to check if A satisfies the three conditions for a subspace:

A contains the zero vector.

A is closed under addition.

A is closed under scalar multiplication.

Let's check each condition one by one:

The zero vector in P3 is the polynomial 0 + 0x + 0x^2 + 0x^3. To see if it belongs to A, we need to check if it satisfies the condition b+c=-1. Since b and c can be any real number, there exists some values of b and c such that b+c=-1. For example, we can choose b=0 and c=-1. Then, a=d=0 to satisfy the condition that 0 + 0x + (-1)x^2 + 0x^3 = -x^2 which is an element of A. Therefore, A contains the zero vector.

To show that A is closed under addition, we need to show that if p(x) and q(x) are two polynomials in A, then their sum p(x) + q(x) is also in A. Let's write out p(x) and q(x) in terms of their coefficients:

p(x) = a1 + b1x + c1x^2 + d1x^3

q(x) = a2 + b2x + c2x^2 + d2x^3

Then, their sum is

p(x) + q(x) = (a1+a2) + (b1+b2)x + (c1+c2)x^2 + (d1+d2)x^3

We need to show that b1+b2 + c1+c2 = -1 for this sum to be in A. Using the fact that p(x) and q(x) are both in A, we know that b1+c1=-1 and b2+c2=-1. Adding these two equations, we get

b1+b2 + c1+c2 = (-1) + (-1) = -2

Therefore, the sum p(x) + q(x) is not in A because it does not satisfy the condition that b+c=-1. Hence, A is not closed under addition.

To show that A is closed under scalar multiplication, we need to show that if p(x) is a polynomial in A and k is any scalar, then the product kp(x) is also in A. Let's write out p(x) in terms of its coefficients:

p(x) = a + bx + cx^2 + dx^3

Then, their product is

kp(x) = ka + kbx + kcx^2 + kdx^3

We need to show that kb+kc=-k for this product to be in A. However, we cannot make such a guarantee since k can be any real number and there is no way to ensure that kb+kc=-k. Therefore, A is not closed under scalar multiplication.

Since A fails to satisfy all three conditions for a subspace, we conclude that A is not a subspace of P3.

Learn more about  scalar multiplication. from

https://brainly.com/question/30221358

#SPJ11

The following table shows the number of candy bars bought at a local grocery store and the
total cost of the candy bars:


Candy Bars: 3, 5, 8, 12, 15, 20, 25

Total Cost: $6.65, $10.45, $16.15, $23.75, $29.45, $38.95, $48.45

Based on the data in the table, find the slope of the linear model that represents the cost
of the candy per bar: m =

Answers

The slope of the linear model representing the cost of the candy per bar is approximately $1.90.

To find the slope of the linear model that represents the cost of the candy per bar, we can use the formula for calculating the slope of a line:

m = (y2 - y1) / (x2 - x1)

Let's select two points from the table: (3, $6.65) and (25, $48.45).

Using these points in the slope formula:

m = ($48.45 - $6.65) / (25 - 3)

m = $41.80 / 22

m ≈ $1.90

Therefore, the slope of the linear model representing the cost of the candy per bar is approximately $1.90.

for such more question on linear model

https://brainly.com/question/30766137

#SPJ8

Consider three urns, one colored red, one white, and one blue. The red urn contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls, and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls. At the initial stage, a ball is randomly selected from the red urn and then returned to that urn. At every subsequent stage, a ball is randomly selected from the urn whose color is the same as that of the ball previously selected and is then returned to that urn. Let Xn be the color of the


ball in the nth draw.



a. What is the state space?


b. Construct the transition matrix P for the Markov chain.


c. Is the Markove chain irreducible? Aperiodic?


d. Compute the limiting distribution of the Markov chain. (Use your computer)


e. Find the stationary distribution for the Markov chain.


f. In the long run, what proportion of the selected balls are red? What proportion are white? What proportion are blue?

Answers

a. The state space consists of {Red, White, Blue}.

b. Transition matrix P: P = {{1/5, 0, 4/5}, {2/7, 3/7, 2/7}, {3/9, 4/9, 2/9}}.

c. The chain is not irreducible. It is aperiodic since there are no closed paths.

d. The limiting distribution can be computed by raising the transition matrix P to a large power.

e. The stationary distribution is the eigenvector corresponding to the eigenvalue 1 of the transition matrix P.

f. The proportion of red, white, and blue balls can be determined from the limiting or stationary distribution.

a. The state space consists of the possible colors of the balls: {Red, White, Blue}.

b. The transition matrix P for the Markov chain can be constructed as follows:

P =

| P(Red|Red)   P(White|Red)  P(Blue|Red)   |

| P(Red|White) P(White|White) P(Blue|White) |

| P(Red|Blue) P(White|Blue) P(Blue|Blue) |

The transition probabilities can be determined based on the information given about the urns and the sampling process.

P(Red|Red) = 1/5 (Since there is 1 red ball and 4 blue balls in the red urn)

P(White|Red) = 0 (There are no white balls in the red urn)

P(Blue|Red) = 4/5 (There are 4 blue balls in the red urn)

P(Red|White) = 2/7 (There are 2 red balls in the white urn)

P(White|White) = 3/7 (There are 3 white balls in the white urn)

P(Blue|White) = 2/7 (There are 2 blue balls in the white urn)

P(Red|Blue) = 3/9 (There are 3 red balls in the blue urn)

P(White|Blue) = 4/9 (There are 4 white balls in the blue urn)

P(Blue|Blue) = 2/9 (There are 2 blue balls in the blue urn)

c. The Markov chain is irreducible if it is possible to reach any state from any other state. In this case, it is not irreducible because it is not possible to transition directly from a red ball to a white or blue ball, or vice versa.

The Markov chain is aperiodic if the greatest common divisor (gcd) of the lengths of all closed paths in the state space is 1. In this case, the chain is aperiodic since there are no closed paths.

d. To compute the limiting distribution of the Markov chain, we can raise the transition matrix P to a large power. Since the given question suggests using a computer, the specific values for the limiting distribution can be calculated using matrix operations.

e. The stationary distribution for the Markov chain is the eigenvector corresponding to the eigenvalue 1 of the transition matrix P. Using matrix operations, this eigenvector can be calculated.

f. In the long run, the proportion of selected balls that are red can be determined by examining the limiting distribution or stationary distribution. Similarly, the proportions of white and blue balls can also be obtained. The specific values can be computed using matrix operations.

For more question on matrix visit:

https://brainly.com/question/2456804

#SPJ8

Assume that f(x, y, z) is a function of three variables that has second-order partial derivatives. Show that VxVf=0

Answers

The vector calculus identity Vx(Vf) = 0 states that the curl of the gradient of any scalar function f of three variables with continuous second-order partial derivatives is equal to zero. Therefore, VxVf=0.

To show that VxVf=0, we need to use the vector calculus identity known as the "curl of the gradient" or "vector Laplacian", which states that Vx(Vf) = 0 for any scalar function f of three variables with continuous second-order partial derivatives.

To prove this, we first write the gradient of f as:

Vf = (∂f/∂x) i + (∂f/∂y) j + (∂f/∂z) k

Taking the curl of this vector yields:

Vx(Vf) = (d/dx)(∂f/∂z) i + (d/dy)(∂f/∂z) j + [(∂/∂y)(∂f/∂x) - (∂/∂x)(∂f/∂y)] k

By Clairaut's theorem, the order of differentiation of a continuous function does not matter, so we can interchange the order of differentiation in the last term, giving:

Vx(Vf) = (d/dx)(∂f/∂z) i + (d/dy)(∂f/∂z) j + (d/dz)(∂f/∂y) i - (d/dz)(∂f/∂x) j

Noting that the mixed partial derivatives (∂^2f/∂x∂z), (∂^2f/∂y∂z), and (∂^2f/∂z∂y) all have the same value by Clairaut's theorem, we can simplify the expression further to:

Vx(Vf) = 0

Therefore, we have shown that VxVf=0 for any scalar function f of three variables that has continuous second-order partial derivatives.

To know more about vector calculus identity, visit:
brainly.com/question/33469582
#SPJ11

Solve the system of equation
4x+y−z=13
3x+5y+2z=21
2x+y+6z=14

Answers

Answer:

x = 3, y = 2 and z = 1.

Step-by-step explanation:

4x+y−z=13

3x+5y+2z=21

2x+y+6z=14

Subtract the third equation from the first:

2x - 7z = -1 ...........   (A)

Multiply the first equation by - 5:

-20x - 5y + 5z = -65

Now add the above to equation 2:

-17x + 7z = -44 ...... (B)

Now add (A) and (B)

-15x = -45

So:

x = 3.

Substitute x = 3 in equation A:

2(3) - 7z = -1

-7z = -7

z = 1.

Finally substitute these values of x and z in the first equation:

4x+y−z=13

4(3) +y - 1 = 13

y = 13 + 1 - 12

y = 2.

Checking these results in equation 3:

2x+y+6z=14:-

2(3) + 2 + 6(1) = 6 + 2 + 6 = 14

- checks out.

Find the average rate of change for the following function. f(x)=2x^3−5x^2+3 between x=−1 and x=2 The average rate of change for f(x) over the interval −1 to 2 is (Type an integer or a simplified fraction.)

Answers

The average rate of change for the function f(x) = 2x³ - 5x² + 3 over the interval from x = -1 to x = 2 is 1. This means that on average, the function increases by 1 unit for every unit increase in x over that interval.

To find the average rate of change for the function f(x) = 2x³ - 5x² + 3 over the interval from x = -1 to x = 2, we can use the formula:

Average rate of change = (f(2) - f(-1)) / (2 - (-1))

First, let's calculate the values of f(2) and f(-1):

f(2) = 2(2)³ - 5(2)² + 3

     = 2(8) - 5(4) + 3

     = 16 - 20 + 3

     = -1

f(-1) = 2(-1)³ - 5(-1)² + 3

      = 2(-1) - 5(1) + 3

      = -2 - 5 + 3

      = -4

Now we can substitute these values into the formula:

Average rate of change = (-1 - (-4)) / (2 - (-1))

                     = (-1 + 4) / (2 + 1)

                     = 3 / 3

                     = 1

Therefore, the average rate of change for f(x) over the interval -1 to 2 is 1.

To know more about function, refer to the link below:

https://brainly.com/question/28858815#

#SPJ11

Let f(x)=x^2 +10x+28−m, find m if the function only has 1 (ONE) x-intercept.

Answers

The quadratic function has only one x-intercept if m = 3.

How to find the value of m?

A quadratic function of the form:

y = ax² + bx + c

Has one solution only if the discriminant D = b² -4ac is equal to zero.

Here the quadratic function is:

y = x² + 10x + 28 - m

The discriminant is:

(10)² -4*1*(28 - m)

And that must be zero, so we can solve the equation:

(10)² -4*1*(28 - m) = 0

100 - 4*(28 - m) =0

100 = 4*(28 - m)

100/4 = 28 - m

25 = 28 - m

m = 28 - 25 = 3

m = 3

Learn more about quadratic functions:

https://brainly.com/question/1214333

#SPJ4

The center of a circle is (8, 10) and its radius is 6. What is the equation of the circle"
(x-² + (y)² =

Answers

Answer:

Step-by-step explanation:

its 2,3.455

1. JK, KL, and LJ are all tangent to circle O. The diagram is not drawn to scale. If JA = 14, AL = 12, and CK = 8, what is the perimeter of ΔJKL?

2. The farthest distance a satellite signal can directly reach is the length of the segment tangent to the curve of Earth's surface. The diagram is not drawn to scale. If the angle formed by the tangent satellite signals is 104°, what is the measure of the intercepted arc (x) on Earth?

Please show the work, thank you.

Answers

Applying tangent theorems, we have: 1. Perimeter = 68, 2. measure of the intercepted arc = 76°.

What is the Tangent Theorem?

One of the tangent theorems states that two tangents that intersect to form an angle outside a circle are congruent, and they form a right angle with the radius of the circle.

1. Applying the tangent theorem, we have:

JA = JB = 14

AL = CL = 12

CK = BK = 8

Perimeter = JA + JB + CL + AL + CK + BK

= 14 + 14 + 12 + 12 + 8 + 8

= 68.

2. Since the radius of the circle forms a right angle with the tangents, therefore, one part of the central angle opposite the intercepted arc would be:

180 - 90 - (104)/2

= 38°

Measure of the intercepted arc = 2(38) = 76°

Learn more about tangent theorems on:

https://brainly.com/question/9892082

#SPJ1

write an expression which maximizes the sugar your could gain from street so that you can satisfy your sweet tooth. hint: define m[i]m[i] as the maximum sugar you can consume so far on the i^{th}i th vendor.

Answers

To maximize the sugar you can gain from street vendors and satisfy your sweet tooth, you can use the following expression:

m[i] = max(m[i-1] + s[i], s[i])

Here, m[i] represents the maximum sugar you can consume so far on the i-th vendor, and s[i] denotes the sugar content of the i-th vendor's offering.

The expression utilizes dynamic programming to calculate the maximum sugar consumption at each step. The variable m[i] stores the maximum sugar you can have up to the i-th vendor.

The expression considers two options: either including the sugar content of the current vendor (s[i]) or starting a new consumption from the current vendor.

To calculate m[i], we compare the sum of the maximum sugar consumption until the previous vendor (m[i-1]) and the sugar content of the current vendor (s[i]) with just the sugar content of the current vendor (s[i]). Taking the maximum of these two options ensures that m[i] stores the highest sugar consumption achieved so far.

By iterating through all the vendors and applying this expression, you can determine the maximum sugar you can gain from the street vendors and satisfy your sweet tooth.

To know more about dynamic programming, refer here:

https://brainly.com/question/30885026#

#SPJ11

For finding median in continuous series, which amongst the following are of importance? Select one: a. Particular frequency of the median class b. Lower limit of the median class c. cumulative frequency preceeding the median class d. all of these For a continuous data distribution, 10 -20 with frequency 3,20 -30 with frequency 5,30−40 with frequency 7 and 40-50 with frequency 1 , the value of Q3​ is Select one: a. 34 b. 30 c. 35.7 d. 32.6

Answers

To find the median in a continuous series, the lower limit and frequency of the median class are important. The correct answer is option (b). For the given continuous data distribution, the value of Q3 is 30.

To find the median in a continuous series, the lower limit and frequency of the median class are important. Therefore, the correct answer is option (b).

To find Q3 in a continuous data distribution, we need to first find the median (Q2). The total frequency is 3+5+7+1 = 16, which is even. Therefore, the median is the average of the 8th and 9th values.

The 8th value is in the class 30-40, which has a cumulative frequency of 3+5 = 8. The lower limit of this class is 30. The class width is 10.

The 9th value is also in the class 30-40, so the median is in this class. The particular frequency of this class is 7. Therefore, the median is:

Q2 = lower limit of median class + [(n/2 - cumulative frequency of the class before median class) / particular frequency of median class] * class width

Q2 = 30 + [(8 - 8) / 7] * 10 = 30

To find Q3, we need to find the median of the upper half of the data. The upper half of the data consists of the classes 30-40 and 40-50. The total frequency of these classes is 7+1 = 8, which is even. Therefore, the median of the upper half is the average of the 4th and 5th values.

The 4th value is in the class 40-50, which has a cumulative frequency of 8. The lower limit of this class is 40. The class width is 10.

The 5th value is also in the class 40-50, so the median of the upper half is in this class. The particular frequency of this class is 1. Therefore, the median of the upper half is:

Q3 = lower limit of median class + [(n/2 - cumulative frequency of the class before median class) / particular frequency of median class] * class width

Q3 = 40 + [(4 - 8) / 1] * 10 = 0

Therefore, the correct answer is option (b): 30.

To know more about continuous series, visit:
brainly.com/question/30548791
#SPJ11

Find the general solution of the system
dx1(t(/dt = 2x1(t)+2x2(t)+t
dx2(t)/dt = x1(t)+3x2(t)-2t

Answers

Given system is: dx1/dt = 2x1 + 2x2 + tdx2/dt = x1 + 3x2 - 2tNow we will use matrix notation, let X = [x1 x2] and A = [2 2; 1 3]. Then the given system can be written in the form of X' = AX + B, where B = [t - 2t] = [t, -2t].Now let D = |A - λI|, where λ is an eigenvalue of A and I is the identity matrix of order 2.

Then D = |(2 - λ) 2; 1 (3 - λ)|= (2 - λ)(3 - λ) - 2= λ² - 5λ + 4= (λ - 1)(λ - 4)Therefore, the eigenvalues of A are λ1 = 1 and λ2 = 4.Now let V1 and V2 be the eigenvectors of A corresponding to eigenvalues λ1 and λ2, respectively. Then AV1 = λ1V1 and AV2 = λ2V2. Therefore, V1 = [1 -1] and V2 = [2 1].Now let P = [V1 V2] = [1 2; -1 1]. Then the inverse of P is P⁻¹ = [1/3 2/3; -1/3 1/3]. Now we can find the matrix S(t) = e^(At) = P*diag(e^(λ1t), e^(λ2t))*P⁻¹, where diag is the diagonal matrix. Therefore,S(t) = [1 2; -1 1] * diag(e^(t), e^(4t)) * [1/3 2/3; -1/3 1/3])= [e^(t)/3 + 2e^(4t)/3, 2e^(t)/3 + e^(4t)/3; -e^(t)/3 + e^(4t)/3, -e^(t)/3 + e^(4t)/3].Now let Y = [y1 y2] = X - S(t).

Then the given system can be written in the form of Y' = AY, where A = [0 2; 1 1] and Y(0) = [x1(0) - (1/3)x2(0) - (e^t - e^4t)/3, x2(0) - (2/3)x1(0) - (2e^t - e^4t)/3].Now let λ1 and λ2 be the eigenvalues of A. Then D = |A - λI| = (λ - 1)(λ - 2). Therefore, the eigenvalues of A are λ1 = 1 and λ2 = 2.Now let V1 and V2 be the eigenvectors of A corresponding to eigenvalues λ1 and λ2, respectively.  Therefore, V1 = [1 -1] and V2 = [2 1].Now let P = [V1 V2] = [1 2; -1 1]. Then the inverse of P is P⁻¹ = [1/3 2/3; -1/3 1/3]. Now we can find the matrix Y(t) = e^(At) * Y(0) = P*diag(e^(λ1t), e^(λ2t))*P⁻¹ * Y(0), where diag is the diagonal matrix. Therefore,Y(t) = [1 2; -1 1] * diag(e^(t), e^(2t)) * [1/3 2/3; -1/3 1/3]) * [x1(0) - (1/3)x2(0) - (e^t - e^4t)/3, x2(0) - (2/3)x1(0) - (2e^t - e^4t)/3]= [(e^t + 2e^(2t))/3*x1(0) + (2e^t - e^(2t))/3*x2(0) + (e^t - e^4t)/3, -(e^t - 2e^(2t))/3*x1(0) + (e^t + e^(2t))/3*x2(0) + (2e^t - e^4t)/3].Therefore, the general solution of the system is X(t) = S(t) + Y(t), where S(t) = [e^(t)/3 + 2e^(4t)/3, 2e^(t)/3 + e^(4t)/3; -e^(t)/3 + e^(4t)/3, -e^(t)/3 + e^(4t)/3] and Y(t) = [(e^t + 2e^(2t))/3*x1(0) + (2e^t - e^(2t))/3*x2(0) + (e^t - e^4t)/3, -(e^t - 2e^(2t))/3*x1(0) + (e^t + e^(2t))/3*x2(0) + (2e^t - e^4t)/3].

To know more about system visit :

https://brainly.com/question/30035551

#SPJ11

Determine whether the following function is injective, surjective, and bijective and briefly explain your reasoning. f:Zx​→N↦∣x∣+1​

Answers

The function f: Zx→N defined as f(x) = |x| + 1 is not injective, is surjective, and is not bijective.

The function is f: Zx→N defined as f(x) = |x| + 1.

To determine if the function is injective, we need to check if every distinct input (x value) produces a unique output (y value). In other words, does every x value have a unique y value?

Let's consider two different x values, a and b, such that a ≠ b. If f(a) = f(b), then the function is not injective.

Using the function definition, we can see that f(a) = |a| + 1 and f(b) = |b| + 1.

If a and b have the same absolute value (|a| = |b|), then f(a) = f(b). For example, if a = 2 and b = -2, both have the absolute value of 2, so f(2) = |2| + 1 = 3, and f(-2) = |-2| + 1 = 3. Therefore, the function is not injective.

Next, let's determine if the function is surjective. A function is surjective if every element in the codomain (in this case, N) has a pre-image in the domain (in this case, Zx).

In this function, the codomain is N (the set of natural numbers) and the range is the set of positive natural numbers. To be surjective, every positive natural number should have a pre-image in Zx.

Considering any positive natural number y, we need to find an x in Zx such that f(x) = y. Rewriting the function, we have |x| + 1 = y.

If we choose x = y - 1, then |x| + 1 = |y - 1| + 1 = y. This shows that for any positive natural number y, there exists an x in Zx such that f(x) = y. Therefore, the function is surjective.

Lastly, let's determine if the function is bijective. A function is bijective if it is both injective and surjective.

Since we established that the function is not injective but is surjective, it is not bijective.

In conclusion, the function f: Zx→N defined as f(x) = |x| + 1 is not injective, is surjective, and is not bijective.

To learn more about "Function" visit: https://brainly.com/question/11624077

#SPJ11

David leased equipment worth $60,000 for 10 years. If the lease rate is 5.75% compounded semi-annually, calculate the size of the lease payment that is required to be made at the beginning of each half-year. Round to the nearest cent.

Answers

The size of the lease payment that is required to be made at the beginning of each half-year is approximately $4,752.79.

To calculate the size of the lease payment, we can use the formula for calculating the present value of an annuity.

The formula for the present value of an annuity is:

PV = PMT * [1 - (1 + r)^(-n)] / r

Where:

PV = Present value

PMT = Payment amount

r = Interest rate per period

n = Number of periods

In this case, the lease rate is 5.75% semi-annually, so we need to adjust the interest rate and the number of periods accordingly.

The interest rate per period is 5.75% / 2 = 0.0575 / 2 = 0.02875 (2 compounding periods per year).

The number of periods is 10 years * 2 = 20 (since payments are made semi-annually).

Substituting these values into the formula, we get:

PV = PMT * [1 - (1 + 0.02875)^(-20)] / 0.02875

We know that the present value (PV) is $60,000 (the equipment worth), so we can rearrange the formula to solve for the payment amount (PMT):

PMT = PV * (r / [1 - (1 + r)^(-n)])

PMT = $60,000 * (0.02875 / [1 - (1 + 0.02875)^(-20)])

Using a calculator, we can calculate the payment amount:

PMT ≈ $60,000 * (0.02875 / [1 - (1 + 0.02875)^(-20)]) ≈ $4,752.79

Know more about annuity here:

https://brainly.com/question/32931568

#SPJ11

Write an explicit formula for


a
n

, the

th
n
th
term of the sequence
27
,
9
,
3
,
.
.
.
27,9,3,....

Answers

The explicit formula for the nth term (an) of the sequence 27, 9, 3, ... can be expressed as an = 27 / 3^(n-1), where n represents the position of the term in the sequence.

To find the explicit formula for the nth term of the sequence 27, 9, 3, ..., we need to identify the pattern or rule governing the sequence.

From the given sequence, we can observe that each term is obtained by dividing the previous term by 3. Specifically, the first term is 27, the second term is obtained by dividing 27 by 3, giving 9, and the third term is obtained by dividing 9 by 3, giving 3. This pattern continues as we divide each term by 3 to get the subsequent term.

Therefore, we can express the nth term, denoted as aₙ, as:

aₙ = 27 / 3^(n-1)

This formula states that to obtain the nth term, we start with 27 and divide it by 3 raised to the power of (n-1), where n represents the position of the term in the sequence.

For example:

When n = 1, the first term is a₁ = 27 / 3^(1-1) = 27 / 3^0 = 27.

When n = 2, the second term is a₂ = 27 / 3^(2-1) = 27 / 3^1 = 9.

When n = 3, the third term is a₃ = 27 / 3^(3-1) = 27 / 3^2 = 3.

Using this explicit formula, you can calculate any term of the sequence by plugging in the value of n into the formula.

for such more question on sequence

https://brainly.com/question/27555792

#SPJ8

1. Let m, and n be positive integers. Prove that ϕ (m/n) = ϕ (m)/ϕ (n) if and only if m = nk, where (n,k) = 1

Answers

ϕ (m/n) = ϕ (m)/ϕ (n) if and only if m = nk, where (n,k) = 1.

First, we need to understand the concept of Euler's totient function (ϕ). The totient function ϕ(n) calculates the number of positive integers less than or equal to n that are coprime (relatively prime) to n. In other words, it counts the number of positive integers less than or equal to n that do not share any common factors with n.

To prove the given statement, we start with the assumption that ϕ(m/n) = ϕ(m)/ϕ(n). This implies that the number of positive integers less than or equal to m/n that are coprime to m/n is equal to the ratio of the number of positive integers less than or equal to m that are coprime to m, divided by the number of positive integers less than or equal to n that are coprime to n.

Now, let's consider the case where m = nk, where (n,k) = 1. This means that m is divisible by n, and n and k do not have any common factors other than 1. In this case, every positive integer less than or equal to m will also be less than or equal to m/n. Moreover, any positive integer that is coprime to m will also be coprime to m/n since dividing by n does not introduce any new common factors.

Therefore, in this case, the number of positive integers less than or equal to m that are coprime to m is the same as the number of positive integers less than or equal to m/n that are coprime to m/n. This leads to ϕ(m) = ϕ(m/n), and since ϕ(m/n) = ϕ(m)/ϕ(n) (from the assumption), we can conclude that ϕ(m) = ϕ(m)/ϕ(n). This proves the given statement.

Learn more about ϕ (m/n)

brainly.com/question/29248920

#SPJ11

1) In the method,two independent variable are assumed to have;
a)Low collinearity
b)High collinearity
c)No collinearity
d)Perfect collinearity
2) If variance of coefficient cannot be applied, we cannot conduct test for;
a) Correlation
b) Determination
c)Significant
d) Residual term

Answers

1) In the method, two independent variable are assumed to have: (b) High collinearity

2) If variance of coefficient cannot be applied, we cannot conduct test for: (b) Determination

1. The method of least squares regression assumes that the independent variables are not perfectly correlated with each other. If two independent variables are perfectly correlated, then the least squares estimator will be biased. This is because the least squares estimator will try to fit the data as closely as possible, and if two independent variables are perfectly correlated, then any change in one variable will cause a change in the other variable. This will make it difficult for the least squares estimator to distinguish between the effects of the two variables.

2. The variance of coefficient is a measure of the uncertainty in the estimated coefficient. If the variance of coefficient is high, then we cannot be confident in the estimated coefficient. This means that we cannot be confident in the results of the test of determination.

The test of determination is a statistical test that is used to determine the proportion of the variance in the dependent variable that is explained by the independent variables. If the variance of coefficient is high, then we cannot be confident in the results of the test of determination, and we cannot conclude that the independent variables do a good job of explaining the variance in the dependent variable.

Here are some additional information about the two methods:

Least squares regression: Least squares regression is a statistical method that is used to fit a line to a set of data points. The line that is fit is the line that minimizes the sum of the squared residuals. The residuals are the difference between the observed values of the dependent variable and the predicted values of the dependent variable.

Test of determination: The test of determination is a statistical test that is used to determine the proportion of the variance in the dependent variable that is explained by the independent variables. The test is based on the coefficient of determination, which is a measure of the correlation between the independent variables and the dependent variable.

Learn more about variable here: brainly.com/question/15078630

#SPJ11

5 Fill in the Blank 4 points AN Section 3.7 - version 1 Given that the constant term in the expansion of (-/---/) * binomial theorem, without expanding, to determine m. The answer is m= 4 Multiple answer 1 points DM Section 11-version 1 is -27, make use of the

Answers

Given that the constant term in the expansion of the (-3x + 2y)^3 binomial theorem, without expanding, to determine m. The answer is m= 4.

So, the missing term should be 2y as it only appears in the constant term. To get the constant term from the binomial theorem, the formula is given by: Constant Term where n = 3, r = ?, a = -3x, and b = 2y.To get the constant term, the value of r is 3.

Thus, the constant term becomes Now, the given constant term in the expansion of the binomial theorem is -27. Thus, we can say that:$$8y^3 = -27$$ Dividing by 8 on both sides, we get:$$y^3 = -\frac{27}{8}$$Taking the cube root on both sides, we get:$$y = -\frac{3}{2}$$ Therefore, the missing term is 2y, which is -6. Hence, the answer is m = 4.

To know more about binomial theorem visit :

https://brainly.com/question/30035551

#SPJ11

Consider the system dx dt dy = 2x+x² - xy dt = = y + y² - 2xy There are four equilibrium solutions to the system, including Find the remaining equilibrium solutions P3 and P4. P₁ = (8) and P2 P₂ = (-²).

Answers

The remaining equilibrium solutions P3 and P4 for the given system are P3 = (0, 0) and P4 = (1, 1).

To find the equilibrium solutions of the given system, we set the derivatives equal to zero. Starting with the first equation, dx/dt = 2x + x² - xy, we set this expression equal to zero and solve for x. By factoring out an x, we get x(2 + x - y) = 0. This implies that either x = 0 or 2 + x - y = 0.

If x = 0, then substituting this value into the second equation, dt/dy = y + y² - 2xy, gives us y + y² = 0. Factoring out a y, we have y(1 + y) = 0, which means either y = 0 or y = -1.

Now, let's consider the case when 2 + x - y = 0. Substituting this expression into the second equation, dt/dy = y + y² - 2xy, we get 2 + x - 2x = 0. Simplifying, we find -x + 2 = 0, which leads to x = 2. Substituting this value back into the first equation, we get 2 + 2 - y = 0, yielding y = 4.

Therefore, we have found three equilibrium solutions: P₁ = (8), P₂ = (-²), and P₃ = (0, 0). Additionally, from the case x = 2, we found another solution P₄ = (1, 1).

Learn more about Equilibrium solutions

brainly.com/question/32806628

#SPJ11

The pH of the blood plasma of a certain animal is 6.6. Find the hydronium ion concentration, [H3O+], of the blood plasma. Use the formula pH =−log [H3O+] The hydronium ion concentration [H3O+]is approximately moles per liter. (Use scientific notation. Use the multiplication symbol in the math palette as needed. Round to the nearest tenth as needed.)

Answers

the hydronium ion concentration [H3O+] of the blood plasma is approximately 2.5 x 10^(-7) moles per liter.

To find the hydronium ion concentration ([H3O+]) of the blood plasma given its pH, we can rearrange the formula pH = -log [H3O+] and solve for [H3O+].

pH = -log [H3O+]

Taking the inverse of the logarithm (-log) function on both sides, we get:

[H3O+] =[tex]10^{(-pH)}[/tex]

Substituting the given pH value of 6.6 into the equation:

[H3O+] = [tex]10^{(-6.6)}[/tex]

Using a calculator or performing the calculation manually, we find:

[H3O+] ≈ 2.5 x [tex]10^{(-7) }[/tex] mol/L

To know more about function visit:;

brainly.com/question/30721594

#SPJ11

help me answer question C and D please, will give brainliest

Answers

C) The acceleration is 6 m/s²

D) The velocity is v =  k*t²

How to find the acceleration and the speed?

C) We have the graph of the acceleration vs the time.

We want to get the acceleration at t = 8, so we need to find t = 8 in the horizontal axis, and then see the correspondent value in the vertical axis.

Each little square represents 1 unit, then at t = 8 we have an acceleration of 6 m/s²

D) A direct proportional relation between two variables is:

y = k*x

Here the velocity is directly proportional to the square of the time, so the velocity is written as:

v = k*t²

Where k is a constant.

Learn more about acceleration at:

https://brainly.com/question/460763

#SPJ1

Given thatf(x)=cos xand the initial guessx_{0} =\frac{2\pi }{3}, and we need to findx_{1}.
Outline how this can be accomplished using Trust Region and Line Search Algorithms for Unconstrained Optimization. .

Answers

To find x₁ using Trust Region and Line Search Algorithms for Unconstrained Optimization with f(x) = cos(x) and x₀ = 2π/3:

Step 1: Apply the Trust Region Algorithm to determine an approximate solution within a trust region.

Step 2: Employ the Line Search Algorithm to refine the initial solution and find a more accurate x₁.

Step 3: Repeat steps 1 and 2 iteratively until convergence is achieved.

To solve the optimization problem, we begin with the Trust Region Algorithm. This algorithm aims to find an approximate solution within a trust region, which is a small region around the initial guess x₀. It involves constructing a quadratic model to approximate the objective function f(x) = cos(x) and minimizing this quadratic model within the trust region. The solution obtained within the trust region serves as an initial guess for the Line Search Algorithm.

The Line Search Algorithm is then applied to further refine the initial solution obtained from the Trust Region Algorithm. This algorithm aims to find a more accurate solution by iteratively searching along a specified search direction. It involves determining the step length that minimizes the objective function along the search direction. The step length is chosen such that it satisfies sufficient decrease conditions, ensuring that the objective function decreases sufficiently.

By repeating steps 1 and 2 iteratively, we can gradually refine the solution and approach the optimal value of x₁. This iterative process continues until convergence is achieved, meaning that the solution does not significantly change between iterations or reaches a desired level of accuracy.

Learn more about Algorithms

brainly.com/question/21172316

#SPJ11

Other Questions
A rectangular piece of metal is 5 in longer than it is wide. Squares with sides 1 in lng are cut from the four cornersand the flaps are folded upward to form an open box. If the volume of the box is 234 in, what were the originaldimensions of the piece of metal? _____: Examples include calcitonin, follicle-stimulating hormone, and luteinizing hormone_____: Signaling molecules inside a cell that start intracellular changes._____: A second messenger that is a derivative of ATP____: An enzyme complex that serves as a link between the first and second messenger._____: A hormone from the posterior pituitary that increases cAMP concentrations within a cell_____: A hormone from the posterior pituitary that uses calcium as the second messengera. First messengerb. Second messengerc. Cyclic AMPd. G-proteine. Antidiuretic hormone (ADH)f. Oxytocin Suppose you win on a scratch-off lottery ticket and you decide to put all of your $3,500 winnings in the bank. The reserve requirement is 10%. What is the maximum possible increase in the money supply as a result of your bank deposit? 0 maximum increase: 35000 Which events could cause the increase in the money supply to be less than its potential? Some loan recipients choose to hold some cash instead of deposi all of it in banks. Banks decide to keep some excess reserves on hand. Banks choose to loan out all excess reserves. All money loaned out is deposited back into the banking system Order the steps of the chemoreceptor reflex pathway:Intra-alveolar pressure equilibrates with atmosphericPlasma oxygen decreasesPressure in lung decreasesChemoreceptor cell in carotid body depolarizesSensory neuron firing increasesDiaphragm and other inspiratory muscles contractMessage sent to RCC in pons/medullaAir moves in down pressure gradientOutput is sent via somatic motor neuronsPotassium channels closeExcitatory neurotransmitter released onto sensory neuronVolume of thoracic cage increases A 6-month-old infant stares at a new object for a considerably longer time when shown for the first time and then less time after that as more frequently shown. What is happening? O Habituation O Visual Cliff O Infant Determinism O Object Permanence A ray of light origimates in glass and travels to ain. The angle of incidence is 36. The ray is partilly reflected from the interfece of gloss and oin at the anple 2 and refrocted at enfle 3. The index of refraction of the gless is 1.5. a) Find the speed of light in glass b) Find 2 c) Find 3 d). Find the critcal ancle You always have three beers with every slice of pizza that you eat: no more, no less. Assume your weekly income is $56, the price of beer is $2, and the price of pizza is $1. A. ( 3 points) Are pizza and beer substitutes or complements for you? B. (12 points) What is your optimal bundle of pizza and beer? Justify your answer. Two identical positive charges exert a re- pulsive force of 6.3 x 10-9 N when separated by a distance 3.9 10-10 m. Calculate the charge of each. The Coulomb constant is 8.98755 x 10 Nm/C. Answer in units of C. A 4 foot, 2.65 inch by 1 foot, 10.96 inch steel panel is heated from 9 C to 60 C. Calculate the change in surface area due to the temperature change. Report your answer in square inches rounded to 2 decimal places with units. 4: Blood types in humans are an example of multiple allele inheritance. What would happen if a type "O" mother and a Type "AB" father have a child?" Find a basis {p(x), q(x)} for the vector space {f(x) P3[x] | (6) = (1)} where P3[x] is the vector space of polynomials in a with degree less than 3. p(x) = q(x) = Can you react to the following statement with a max of 12 sentences and present your personal argument?The government should not intervene in global business. This can affect free trade and can only benefit local businesses. What is the relative location of your home? Think About a Plan A craftsman makes and sells violins. The function (I(x)=5995 x) represents the income in dollars from selling (x) violins. The function (P(y)=y-100,000) represents his profit in dollars if he makes an income of (y) dollars. What is the profit from selling 30 violins? How can you write a composite function to represent the craftsman's profit? How can you use the composite function to find the profit earned when he sells 30 violins? The unit cell for uranium (U) has orthorhombic symmetry, with a, b, and c lattice param- eters of 0.286, 0.587, and 0.495 nm, respectively. Uranium atomic radius and weight are 0.1385 nm and 238.03 g/mol, respectively. 1. If uranium's atomic packing factor is 0.54, compute the number of atoms per cell (n). 2. Compute uranium's density (p). Explain the pathophysiology of Meningococcal septicaemia?(200-300 words) mike carlson will receive $26,000 a year from the end of the third year to the end of the 17th year (15 payments). the discount rate is 11%. the present value today of this deferred annuity is Exercise 1 Draw two lines under the simple predicate in each sentence. Label any direct object d.o. and any indirect object i.o.Mr. Lichtenberg gave the football players a pep talk. Consider the nuclear fusion reaction 12H+12H>13H+11H Each fusion event releases approximately 4.03MeV of energy. How much total energy, in joules, would be released if all the deuterium atoms (12H) in a typical 0.290 kg glass of water were to undergo this fusion reaction? Assume that approximately 0.0135% of all the hydrogen atoms in the water are deuterium. energy released: Incorrect A typical human body metabolizes energy from food at a rate of about 104.5 W, on average. How long, in days, would it take a human to metabolize the amount of energy released? time to metabolize the amount of energy released: days A circular loop of 200 turns and 12 cm in diameter is designed to rotate 90 in 0.2 s. Initially, the loop is placed in a magnetic field such that the flux is zero, and then the loop is rotated 90. If the induced emf in the loop is 0.4 mV, what is the magnitude of the magnetic field? Steam Workshop Downloader