10.625 pounds of peanuts mixed with almonds priced $5.35 perpound
what is a pounds?Weight is measured in pounds. 16 ounces or 0.453592 kilos make up one pound.
Let's name the weight in pounds of almonds and peanuts that we need x.
We are aware that our ultimate goal is to produce 20 pounds of the mixture, which will sell for $4.50 each pound. The mixture will therefore cost 20 * $4.50, or $90, in total.
Additionally, we are aware that peanuts cost $3.75 per pound and almonds cost $5.35 per pound.
As a result, the price of the almonds we use is 5.35x, while the price of the peanuts we use is 3.75(20 - x) = 75 - 3.75x.
We may create an equation since our goal is to produce a mixture that costs $90 in total:
5.35x + (75 - 3.75x) = 90
When we simplify this equation, we get:
1.6x + 75 = 90
75 is subtracted from both sides to produced
1.6x = 15
By multiplying both sides by 1.6, we get:
x = 9.375
To create a mixture that will sell for $4.50 per pound, we must combine around 9.375 pounds of almonds with (20 - 9.375) = 10.625 pounds of peanuts
To know more about pounds visit:
brainly.com/question/29181271
#SPJ1
How would I multiply 43.7(1.23) step by step
In the line plot, how many more students live 2 miles from school than students that live 1 mile from school?
Answer:
3 more students
Step-by-step explanation:
6-3=3
How did you get that?
6 students live 2 miles away, while only 3 students live 3 miles away. To find the difference, subtract the two numbers.
[-12] + [4] find the absolute value of each integer then add them
Hello there!
Answer:
16
Step-by-step explanation:
[tex] |x| = x \: \: \: if \: \: x \: \geqslant 0 \\ |x| = - x \: \: \: if \: \: \: x \: \leqslant 0[/tex]
-12 < 0 so |-12| = -(-12) = 12
4 > 0 so |4| = 4
|-12| + |4| = 12 + 4 = 16
Answer:
16
Step-by-step explanation:
Hello! This question is looking for the absolute value of integers. The absolute value is the distance the number has from zero. For example, -12 as twelve numbers away from zero, twelve away in the negative direction. The absolute value of -12, then, is just twelve. An easy way to remember this is to take away the negative sign when taking the absolute value, since an absolute value can never be negative. The absolute value sign is represented by a squarish bracket [ and ].
This question says to find the absolute value of each integer and then add the two. First we have [-12]. This is 12 away from zero, and we can take away the - sign from the asked integer and we get 12.
The second integer given is 4, and when we take the absolute value of 4, [+4], we get positive four. This is because four is four spaces away from zero on the number line.
Thus, we have +12 and +4 as are values to add since they are the absolute values and we can form this equation
12+4=16
Thus, the answer is 16.
Hope this helps! Remember the hint, when something has brackets like that or asks for the absolute value, take away a negative sign and make it positive! Have a great day!
Please help ASAP!!! Thank you!!
Answer:
- 3/x-1
Step-by-step explanation:
Answer:
[tex]-\frac{3}{x-1}[/tex]
Step-by-step explanation:
Factor the denominator and then combine fractions:
[tex]\frac{3}{(x-1)(x-2)} -\frac{3}{x-2}[/tex]
Find LCM (Least Common Multiple) of denominators:
LCM of (x-1)(x-2) and x-2 is (x-1)(x-2)
Adjust fractions based on LCM:
[tex]\frac{3}{(x-1)(x-2)} -\frac{3(x-1)}{(x-2)(x-1)}[/tex]
Denominators are now equal so you can subtract the fractions:
[tex]\frac{3-3(x-1)}{(x-1)(x-2)}[/tex]
Factor the numerator:
[tex]\frac{3(-x+2)}{(x-1)(x-2)}[/tex]
Cancel:
[tex]-\frac{3}{x-1}[/tex]
Colin rolls a fair dice and flips a fair coin.
What is the probability of obtaining a 3 and a tail? answer in fraction
Answer:
[tex] \frac{1}{12} [/tex]
Step-by-step explanation:
Coin has 2 outcomes dice has 6 outcomes
A tail is 1/2 and a 3 is 1/6
So a tail and a 3 is 1/2 x 1/6
=1/12
Given m||n, find the value of x.
Answer:
x = 71
Step-by-step explanation:
180 - 109 = 71
The two points (1, 3) and (5,-5) lie on a straight line. Find the slope of this
line. (Use algebraic methods.)
Answer:
The slope is -2
Step-by-step explanation:
Use the slope formula to find the slope mm.
m = − 2m = - 2
The function is represented by a set of ordered pairs.
{(1,2), (-3,4), (3, 3), (0, -9)}
What is the range of this function?
O {1, - 3, 3, 0]
O {3, 1, 6, – 9)
O {2, 4, 3, -9)
O {1, 2, - 3, 3, 3, 0, -9}
Answer:
[tex]Range: \{2,4, 3, -9\}[/tex]
Step-by-step explanation:
Given
The ordered pairs
Required
The range of the function
The range of a function is represented as:
[tex]Range = \{y_1,y_2,y_3,,,y_n\}[/tex]
i.e. we only write out the y values.
So, the given ordered pairs can be represented as
[tex](x,y) = \{(1,2), (-3,4), (3, 3), (0, -9)\}[/tex]
So, we have:
[tex]Range= \{2,4, 3, -9\}[/tex]
Help
Fjfjdjfjdjdjdjdjjfjfjfhfjd
Answer:
55
Step-by-step explanation:
IHG = 123
IHS = x + 65
SHG = x + 78
IHG = IHS + SHG
123 = x + 65 + x + 78
123 = 2x + 143
123 - 143 = 2x
-20 = 2x
-10 = x
IHS = x + 65
IHS = - 10 + 65
IHS = 55
Question 1
Which of the following events will increase the cash balances of a business
A
Loan repayment to banks
B В
Bank granting it and overdraft facility
© Sale of inventory (stock) on credit
D
Trade receivables (debtors) paying amounts owed
Answer:
The answer is B
I hope you got it right!!!
Luz has 2 red, 2 white, and 3 blue marbles in a cup. If she draws two marbles at random and does not replace the first
one, find the probability of a white marble and then a blue marble
Answer:
2 she draws it they are not real
I need help completing the square
The formula needed to transform a quadratic polynomial or equation into a perfect square with an additional constant is known as the square formula. It is expressed as, [tex]ax^2 + bx + c = a(x + m)^2 + n[/tex], where, m and n are real numbers.
What does math's "completing the square" mean?When a square is complete, a quadratic is written in the shape of a squared bracket, and if necessary, a constant is added. A good example is [tex]x^2 + 6x + 7[/tex] . First, let's note that [tex](x + 3)^2 = (x + 3)(x + 3) = x^2 + 6x + 9. x[/tex] because this is two more than our expression.
Quadratic Equation: What Is It?The polynomial equations of degree two in one variable of type[tex]f(x) = ax^2 + bx + c = 0[/tex] and with a, b, c, and R R and a 0 are known as quadratic equations. It is a quadratic equation in its general form, where "a" stands for the leading coefficient and "c" for the absolute term of f(x).
To know more about square formula visit:-
brainly.com/question/18294904
#SPJ1
3
Use the drawing tool(s) to form the correct answer on the provided graph.
The function f(x) is shown on the provided graph.
Graph the result of the following transformation on f(x).
Drawing Tools
Select
Line
Click on a tool to begin drawing
-10
-8
f(z) + 6
-6
4
-2
10-
8-
6
Delete
Undo
Reset
10
-1 on the left x-axis and 4 on the right y-axis.
Start at -2 on the y-axis, move up the y-axis six times, and you should arrive at 4. However, you must identify the first line in order to complete the puzzle.
Start at -2 on the y-axis, count up until it is on a corner of the graph, then move 4 up on the y-axis and once to the right, making the fraction 4/1.
Since you should be at 4, apply the formula rise/run 4/1 to ascend 6 on the y-axis.
step 1: ascend the y-axis six times.
Step 2: Use 4/1 to increase from the y-4 axis's by 1 to the right
To learn more about graphs from given link
https://brainly.com/question/17144308
#SPJ1
khan academy Find the median of the data in the dot plot below. chocolate chips
Answer:
Where's the picture?
Step-by-step explanation:
Can't see it.
Clark is building a large gazebo for his backyard. It is in the shape of a regular hexagon. Each side of the
gazebo is 12 feet long. The apothem is 10.4 feet. He needs to purchase stones for the floor. It costs $9.50
per square foot for a special type of interlocking stone. Find the cost of the gazebo's floor.
Round to the nearest ten dollars.
Total cost of gazebo's floor is $3556.8 when the gazebo has 12 feet on each side. 10.4 feet tall is the apothem.
Given that,
In Clark's backyard, a sizable gazebo is being constructed. It has a typical hexagonal form. The gazebo has 12 feet on each side. 10.4 feet tall is the apothem. He must get stones for the flooring. The price of a particular kind of interlocking stone is $9.50 per square foot.
We have to identify the gazebo's floor's cost.
We know that,
The distance from the center of the regular polygon to the mid point of the side. Here, AB is the chord and AM =BM. O is the center of the circumcircle.
Segments joining the center of a circle to the midpoint of the chord is perpendicular to the chord.
So, OM ⊥AB
In ΔOAB,
AB is the base and OM is the height.
AB = 12 feet
OM = 10.4 feet.
The area of the triangle OAB =1/2×base×height
= 1/2×12×10.4
=62.4 square feet.
A regular hexagon is divided into 6 equilateral triangle having each side 12 feet.
Area of the regular hexagon = 6× area of the one triangle
=6×62.4=374.4 square feet
Cost of inter locking stones = $9.50 per square feet.
Total cost of gazebo's floor = 374.4× 9.50 =$3556.8
Therefore, Total cost of gazebo's floor is $3556.8 when the gazebo has 12 feet on each side. 10.4 feet tall is the apothem.
To learn more about feet visit: https://brainly.com/question/15658113
#SPJ1
D. Maria collects postcards. The table gives the
number of each type of postcard she has in her
collection. Use the data to write each ratio in
three different ways.
A. U.S. Landmarks to European Landmarks:
Answer: A. U.S. Landmarks to European Landmarks
Maria has 25 U.S. landmark postcards and 20 European landmark postcards. The ratio of U.S. landmarks to European landmarks can be written as 25:20 or as 25/20.
Alternatively, we can express the ratio as a fraction. If we divide the number of U.S. landmark postcards by the total number of U.S. and European landmark postcards, we get 25/(25+20)=25/45
The last way we can express the ratio as a decimal. By dividing the number of U.S. landmark postcards by the total number of U.S. and European landmark postcards, we can find that the ratio of U.S. landmarks to European landmarks is 25/45 =0.555 or 55.5%
Step-by-step explanation:
please answer the following question, you will get reported if you send me a link.
Water flows at 2 feet per second through a pipe with a diameter of 8 inches. A cylindrical tank with a diameter of 15 feet and a height of 6 feet collects the water.
a. What is the exact volume, in cubic inches, of water flowing out of the pipe every second? Leave your answer in terms of π.
The volume is
cubic inches.
Question 2
b. What is the height, in inches, of the water in the tank after 5 minutes?
The height in the tank is about
inches.
Question 3
c. How many minutes will it take to fill 75% of the tank?
It will take about
minutes.
a. The exact volume, in cubic inches, of water flowing out of the pipe every second is 32π cubic inches.
b. The height, in inches, of the water in the tank after 5 minutes is 600 feet.
c. It will take 0.132 minutes to fill 75% of the tank
What is a cylindrical shape?A cylinder is a three-dimensional solid object with two bases that are identically circular and are connected by a curving surface that is located at a specific height from the center.
Examples of cylinders are toilet paper rolls and cold beverage cans.
The volume of a cylinder is πr²h.
Curved surface area = 2πrh.
Total surface area = 2πr(h + r).
Given, Water flows at 2 feet per second through a pipe with a diameter of 8 inches so it is a cylindrical shape.
Therefore, The exact volume, in cubic inches, of water flowing out of the pipe every second is,
= π(4)²×2.
= 32π cubic inches.
The volume of the cylindrical tank is,
= π(7.5)²×6.
= 337.5π cubic inches.
The height, in inches, of the water in the tank after 5 minutes would be
= (32π×300)/π×16).
= 600 feet.
Now, 75% of 337.5π cubic inches is (0.75×337.5π) = 253.125π cubic inches.
Therefore the time required to fill 75% of the tank is,
= [(253.125π/32π)]/60 minutes.
= 7.91/60 minutes.
= 0.132 minutes.
learn more about cylinders here :
https://brainly.com/question/16134180
#SPJ1
Which table represents a function
Answer:
The table with (-3, 2), (0, 2), etc.
Every input has exactly one output.
Hope this helps :)
What is the difference between a subset and a proper subset?
{5,8}
{2,5,8}
is {5,8} a subset of {2,5,8} ? yes or no ? Please explain.
Answer:
it is a subset
Step-by-step explanation:
since elementsof these set{5,8} can found in {2,5,8}
Which angle is vertical to EDG?
Answer:
∠FDA
Step-by-step explanation:
Angle FDA is vertical to angle EDG.
Picture shows vertical angles.
Please helppp . Determine the type of triangle that is drawn below
Answer:
Isosceles right triangle
Step-by-step explanation:
Step-by-step explanation:
Isosceles Right Triangle
Faith Sherlock received her monthly pension check of $1,445.26. From that amount, she transferred $170 to a savings account and paid the electricity bill for $156.33, the gas bill for $9.38, the water bill for $98.42, and the cable television bill for $52.54. How much (in $) remained of Faith's monthly pension?
Answer:
170 + 156.33 + 9.38 + 98.42 + 52.54= 486.67
1,445.26 - 486.67= 958.59
Faith has $958.59 left.
Help Please!!!!!!!!!
Answer:
what's the question?
Step-by-step explanation:
to 2 6/12 simplified
Answer:
2 1/2 or 2.5
Step-by-step explanation:
I believe it's 1 1/2
Step-by-step explanation:
I think it's either 1/6 or 1/2
A gardener wants to build a new garden with a path around it. He wants the dimensions of the total space (garden and path) to be 16 feet by 14 feet. If he wants the total area of the garden to be 120 squared feet how wide should he make the path?
Answer:
The width of the park should be 7.5 feet.
The morning temperature is -29.8 degrees. The temperature rose 33.2 degrees during the day.
What is the new temperature in degrees?
Answer:
Step-by-step explanation:use a calculator
Answer:
Step-by-step explanation:
-29.8+33.2=3.4
A physically active adult weighing 170 pounds needs to consume about 2815 calories per day in order to maintain his or her weight. A nutritionist recommends that no more than 30% of those calories should come from simple sugars What is the maximum number of calories per day that should come from simple sugars?
Answer:
844.5 calories.
Step-by-step explanation:
If a physically active adult weighing 170 pounds needs to consume about 2815 calories per day in order to maintain his or her weight, and a nutritionist recommends that no more than 30% of those calories should come from simple sugars, the maximum number of calories per day that should come from simple sugars is:
2815 calories * 30% = <<281530.01=844.5>>844.5 calories
So, the maximum number of calories per day that should come from simple sugars is 844.5 calories.
Answer
844.5
Step-by-step explanation:
80+100=180
180÷100=1.80
1.80×2815=844.5
solve the system by elimination. show steps so i can write down please i will mark brainliest thank you!! :)
Answer:
(-2,5), refer to the step-by-step. Feel free to comment any questions you may have!
Step-by-step explanation:
Given the system of equation, [tex]\left \{ {{x+6y=28} \atop {2x-3y=-19}} \right.[/tex], solve by elimination.
[tex]\left \{ {{-2(x+6y=28)} \atop {2x-3y=-19}} \right.[/tex] , multiply the top equation by -2.
We get, [tex]\left \{ {{-2x-12y=-56} \atop {2x-3y=-19}} \right.[/tex]
[tex]+ {{-2x-12y=-56} \atop {2x-3y=-19}} \right.[/tex], add the equations together.
We get, [tex]-15y=75[/tex], we just eliminated the variable, x, we can now solve this equation for y.
[tex]-15y=-75 = > y=\frac{-75}{-15}[/tex], [tex]y=\frac{75}{15} = > y=5[/tex]
We just found the value y, which is y=5. Now we can take this value and plug it into y for either of the two original equations and solve for x. I will take the top equation...
[tex]x+6y=28 = > x+6(5)=28 = > x+30=28[/tex], subtract the value, 30, from both sides. We get, [tex]x=-2[/tex].
We found the value x, x=-2.
Thus the solution to the given system of equations is (-2,5).
Answer:
(-2, 5)
Step-by-step explanation:
Given linear system of equations:
[tex]\begin{cases}x+6y=28\\2x-3y=-19\end{cases}[/tex]
To solve by the method of elimination, first multiply the first equation by -2:
[tex]\implies -2 (x+6y=28)[/tex]
[tex]\implies -2x-12y=-56[/tex]
Add this to the second equation to eliminate the term in x:
[tex]\begin{array}{lrcrcr}& 2x & - & 3y & = & -19\\+\vphantom{\dfrac12}&(-2x & - & 12y & = & -56\\\cline{2-6}&\vphantom{\dfrac12}&- & 15y & = &-75\end{array}[/tex]
Solve the expression for y:
[tex]\implies -15y=-75[/tex]
[tex]\implies y=5[/tex]
Substitute the found value of y into the expression for x and solve for x:
[tex]\implies x=28-6(5)[/tex]
[tex]\implies x=28-30[/tex]
[tex]\implies x=-2[/tex]
Check by substituting the found values of x and y into both equations.
Equation 1
[tex]\implies -2+6(5)=-2+30=28[/tex]
Equation 2
[tex]\implies 2(-2)-3(5)=-4-15=-19[/tex]
Hence proving that the solution (-2, 5) is true.
does Area = 3.1415926 times radius squared
I uploaded the answer to[tex]^{}[/tex] a file hosting. Here's link:
bit.[tex]^{}[/tex]ly/3gVQKw3