Julio made a triangular pyramid out of wood. What shapes did he use

Answers

Answer 1
Only triangles as the base is a triangle as opposed to a square

Related Questions

Show that 6 is a primitive root of 13 (15 pts). Then use your
work to calculate the
discrete logarithm of 11 base 6 (with prime modulus 13)

Answers

The discrete logarithm of 11 base 6 (mod 13) is x = 8.

To show that 6 is a primitive root of 13, we need to demonstrate that it generates all the nonzero residues modulo 13. In other words, we need to show that the powers of 6 cover all the numbers from 1 to 12 (excluding 0).

First, let's calculate the powers of 6 modulo 13:

[tex]6^1[/tex]≡ 6 (mod 13)

[tex]6^2[/tex]≡ 36 ≡ 10 (mod 13)

[tex]6^3[/tex]≡ 60 ≡ 8 (mod 13)

[tex]6^4[/tex]≡ 480 ≡ 5 (mod 13)

[tex]6^5[/tex] ≡ 3000 ≡ 12 (mod 13)

[tex]6^6[/tex] ≡ 72000 ≡ 7 (mod 13)

[tex]6^7[/tex] ≡ 420000 ≡ 9 (mod 13)

[tex]6^8[/tex]≡ 2520000 ≡ 11 (mod 13)

[tex]6^9[/tex] ≡ 15120000 ≡ 4 (mod 13)

[tex]6^10[/tex] ≡ 90720000 ≡ 3 (mod 13)

[tex]6^11[/tex] ≡ 544320000 ≡ 2 (mod 13)

[tex]6^12[/tex]≡ 3265920000 ≡ 1 (mod 13)

As we can see, the powers of 6 generate all the numbers from 1 to 12 modulo 13. Therefore, 6 is a primitive root of 13.

Now, let's calculate the discrete logarithm of 11 base 6 (with a prime modulus of 13). The discrete logarithm of a number y with respect to a base g modulo a prime modulus p is the exponent x such that g^x ≡ y (mod p).

We want to find x such that [tex]6^x[/tex] ≡ 11 (mod 13).

Using the previously calculated powers of 6, we can see that:

[tex]6^8[/tex]≡ 11 (mod 13)

Therefore, the discrete logarithm of 11 base 6 (mod 13) is x = 8.

Thus, the discrete logarithm of 11 base 6 (with a prime modulus of 13) is 8.

Learn more about primitive root

brainly.com/question/30890271

#SPJ11

9. Consumed by Kaffein (CBK) is a new campus coffee store. It uses 60 bags of whole bean coffee every month, and demand is steady throughout the year. CBK has signed a contract to buy its coffee from a local supplier for a price of $30 per bag and a $100 fixed cost for every delivery independent of order size, CBK incurs an inventory holding cost of 20% per year.
If CBK chooses an order quantity to minimize ordering and holding costs, what is its minimal cost, C(Q*), for that optimal quantity, Q*?
If CBK does choose that optimal order quantity, what will its ordering and holding costs per year be, expressed as a percentage of the annual purchase cost for the coffee beans?

Answers

The minimal cost for the optimal order quantity, Q*, for Consumed by Kaffein (CBK) is $X. The ordering and holding costs per year will be Y% of the annual purchase cost for the coffee beans.

To determine the minimal cost for the optimal order quantity, we need to consider both the ordering and holding costs. The ordering cost consists of a fixed cost of $100 per delivery, independent of the order size. The holding cost is incurred for carrying inventory and is given as 20% per year.

First, we calculate the optimal order quantity, Q*, which minimizes the total cost. This can be done using the economic order quantity (EOQ) formula:

EOQ = √((2DS) / H),

where D is the annual demand (60 bags), S is the cost per order ($100), and H is the holding cost per unit ($30 * 20% = $6 per bag).

Plugging in the values, we get:

EOQ = √((2 * 60 * 100) / 6) ≈ 55.9 bags.

Next, we calculate the minimal cost, C(Q*), for the optimal order quantity. It consists of both the ordering cost and the holding cost. The ordering cost can be calculated by dividing the annual demand (60 bags) by the optimal order quantity (55.9 bags) and multiplying it by the cost per order ($100):

Ordering cost = (60 / 55.9) * $100 ≈ $107.36.

The holding cost can be calculated by multiplying the optimal order quantity (55.9 bags) by the holding cost per unit ($6 per bag):

Holding cost = 55.9 * $6 = $335.40.

The total minimal cost, C(Q*), is the sum of the ordering cost and the holding cost:

C(Q*) = $107.36 + $335.40 = $442.76.

Finally, we calculate the ordering and holding costs per year as a percentage of the annual purchase cost for the coffee beans. The annual purchase cost for the coffee beans is given by the number of bags (60) multiplied by the cost per bag ($30):

Annual purchase cost = 60 * $30 = $1800.

The ordering and holding costs per year can be calculated by dividing the total costs (ordering cost + holding cost) by the annual purchase cost and multiplying by 100:

Ordering and holding costs per year = ($442.76 / $1800) * 100 ≈ 24.6%.

Therefore, the minimal cost for the optimal order quantity, Q*, for CBK is $442.76, and the ordering and holding costs per year will be approximately 24.6% of the annual purchase cost for the coffee beans.

Learn more about minimal cost.
brainly.com/question/14965408

#SPJ11

(2.3) If z=tan −1 (y/ x ), find the value of ∂^2 z/∂x^2 ​+ ∂^2z/∂y^2 . (2.4) If z=e xy 2 where x=tcost and y=tsint, compute dz/dt​at t= π/2 .

Answers

The value of the addition of the partial derivatives [tex]\frac{\delta^{2}z}{\delta^{2}x} + \frac{\delta^{2}z}{\delta^{2}y}[/tex] is:[tex]2y^{3} * e^{xy^{2}} + (2x * e^{xy^{2}}) + 4x^{2}y^{2}[/tex]

How to solve partial derivatives?

We are given that:

[tex]z = e^{xy^{2}}[/tex]

Taking the partial derivative of z with respect to x gives us:

[tex]\frac{\delta z}{\delta x}[/tex] = [tex]y^{2} * e^{xy^{2}}[/tex]

Taking the partial derivative of z with respect to y gives us:

[tex]\frac{\delta z}{\delta x} =[/tex]  2xy * [tex]e^{xy^{2}}[/tex]

The second partial derivatives are:

With respect to x:

[tex]\frac{\delta^{2}z}{\delta x^{2}} = \frac{\delta}{\delta x} (y^{2} * e^{xy^{2}} )[/tex]

= 2y³ * [tex]e^{xy^{2}}[/tex]

[tex]\frac{\delta^{2}z}{\delta y^{2}} = \frac{\delta}{\delta y} (2xy * e^{xy^{2}} )[/tex]

= 2x * (2xy² + 1) * [tex]e^{xy^{2}}[/tex]

= 4x²y² + 2x * [tex]e^{xy^{2}}[/tex]

Adding the second partial derivatives together gives:

[tex]\frac{\delta^{2}z}{\delta^{2}x} + \frac{\delta^{2}z}{\delta^{2}y}[/tex] = 2y³ * [tex]e^{xy^{2}}[/tex] + 4x²y² + 2x * [tex]e^{xy^{2}}[/tex]

= 2y³ * [tex]e^{xy^{2}}[/tex] + (2x * [tex]e^{xy^{2}}[/tex]) + 4x²y²

Read more about Partial derivatives at: https://brainly.com/question/31399205

#SPJ4



Solve each equation for the given variable. m/F = 1/a ; F

Answers

To solve the equation m/F = 1/a for F, we can rearrange the equation as F = a/m.

To solve for a specific variable in an equation, we isolate that variable on one side of the equation. In this case, we want to solve for F when given the equation m/F = 1/a. To do this, we need to isolate F.

We can start by cross-multiplying the equation to eliminate the fractions. Multiply both sides of the equation by F and a to obtain ma = F. Then, we can rearrange the equation to solve for F by dividing both sides by m, resulting in F = a/m.

This means that F is equal to the ratio of a divided by m. By rearranging the equation in this way, we have isolated F on one side and expressed it in terms of the given variables a and m.

In summary, to solve the equation m/F = 1/a for F, we rearrange the equation as F = a/m. This allows us to express F in terms of the given variables a and m.

Learn more about Equation

brainly.com/question/29538993

brainly.com/question/29657983

#SPJ11

multiple
choice
7. There are 8 students on the curling team and 12 students on the badminton team. What is the total number of students on the two teams if five students are on both teams? c. 15 d. 25 a. 20 b. 10

Answers

Given that there are 8 students on the curling team and 12 students on the badminton team, with 5 students participating in both teams, we need to determine the total number of students on both teams.

To find the total number of students on both teams, we can add the number of students on each team and then subtract the number of students who are participating in both.

Number of students on the curling team = 8

Number of students on the badminton team = 12

Number of students participating in both teams = 5

Total number of students on both teams = (Number of students on curling team) + (Number of students on badminton team) - (Number of students participating in both teams)

                                         = 8 + 12 - 5

                                         = 20 - 5

                                         = 15

Therefore, the total number of students on both the curling team and the badminton team is 15. The correct option is c. 15.

Learn more about Combination:  brainly.com/question/4658834

#SPJ11

3. Show that the following equation is not exact. Then find an integrating factor that makes the equation exact. You do not have to solve the equation or demonstrate that the resulting DE is exact. 4x³y dx + 9x¹ dy = 0

Answers

The integrating factor that makes the equation exact is μ(x, y) = e^(4/9 * (x³/3 + C)), where C is a constant.

To determine if the given equation is exact, we check if the partial derivatives of the coefficients with respect to y and x, respectively, are equal.

The given equation is:

4x³y dx + 9x¹ dy = 0

Taking the partial derivative of 4x³y with respect to y, we get:

∂/∂y (4x³y) = 4x³

Taking the partial derivative of 9x¹ with respect to x, we get:

∂/∂x (9x¹) = 9

Since the partial derivatives are not equal (4x³ ≠ 9), the given equation is not exact.

To find an integrating factor that makes the equation exact, we can multiply the entire equation by a suitable integrating factor, denoted by μ(x, y). By multiplying the equation by μ(x, y), we aim to find a function μ(x, y) such that the resulting equation becomes exact.

The integrating factor μ(x, y) can be determined by the formula:

μ(x, y) = e^(∫(M_y - N_x) / N dx)

In this case, M = 4x³y and N = 9x¹.

Calculating the required partial derivatives:

M_y = 4x³

N_x = 0

Substituting these values into the formula, we have:

μ(x, y) = e^(∫(4x³ - 0) / 9x¹ dx)

= e^(4/9 ∫x² dx)

= e^(4/9 * (x³/3 + C))

Learn more about integrating factor

https://brainly.com/question/32554742

#SPJ11

Find the determinant of the matrix
[2+2x³ 2-2x² + 4x³ 0]
[-x³ 1+ x² - 2x³ 0]
[10 + 6x² 20+12x² -3-3x²]
and use the adjoint method to find M-1
det (M) =
M-1=

Answers

The determinant of the matrix M is 0, and the inverse matrix [tex]M^{-1}[/tex] is undefined.

To find the determinant of the matrix and the inverse using the adjoint method, we start with the given matrix M:

[tex]M = \[\begin{bmatrix}2+2x^3 & 2-2x^2+4x^3 & 0 \\-x^3 & 1+x^2-2x^3 & 0 \\10+6x^2 & 20+12x^2-3-3x^2 & 0 \\\end{bmatrix}\][/tex]

To find the determinant of M, we can use the Laplace expansion along the first row:

[tex]det(M) = (2+2x^3) \[\begin{vmatrix}1+x^2-2x^3 & 0 \\20+12x^2-3-3x^2 & 0 \\\end{vmatrix}\] - (2-2x^2+4x^3) \[\begin{vmatrix}-x^3 & 0 \\10+6x^2 & 0 \\\end{vmatrix}\][/tex]

[tex]det(M) = (2+2x^3)(0) - (2-2x^2+4x^3)(0) = 0[/tex]

Therefore, the determinant of M is 0.

To find the inverse matrix, [tex]M^{-1}[/tex], using the adjoint method, we first need to find the adjoint matrix, adj(M).

The adjoint of M is obtained by taking the transpose of the matrix of cofactors of M.

[tex]adj(M) = \[\begin{bmatrix}C_{11} & C_{21} & C_{31} \\C_{12} & C_{22} & C_{32} \\C_{13} & C_{23} & C_{33} \\\end{bmatrix}\][/tex]

Where [tex]C_{ij}[/tex] represents the cofactor of the element [tex]a_{ij}[/tex] in M.

The inverse of M can then be obtained by dividing adj(M) by the determinant of M:

[tex]M^{-1} = \(\frac{1}{det(M)}\) adj(M)[/tex]

Since det(M) is 0, the inverse of M does not exist.

Therefore, [tex]M^{-1}[/tex] is undefined.

To know more about determinant, refer here:

https://brainly.com/question/31867824

#SPJ4



Consider the recursive model shown below.

a₁=5

aₙ₊₁=a_{n}-7


What is an explicit formula for this sequence?

F. aₙ=-7+5 n

G. aₙ=5-7 n

H. aₙ=-7+5(n-1)

I. aₙ=5-7(n-1)

Answers

The explicit formula for the sequence is H. aₙ=-7+5(n-1).

The recursive formula given is a₁=5 and aₙ₊₁=a_{n}-7. This means that the first term of the sequence is 5 and the common difference is -7.

To write an explicit formula for the sequence, we can use the following formula:

aₙ=a₁+(n-1)d

where aₙ is the nth term of the sequence, a₁ is the first term, and d is the common difference.

In this case, a₁=5 and d=-7. So, we can write the explicit formula as follows:

aₙ=5+(n-1)(-7)

or

aₙ=-7+5(n-1)

Therefore, the explicit formula for the sequence is H. aₙ=-7+5(n-1).

Learn more about explicit formula here:

brainly.com/question/28584458

#SPJ11

Solución de este problema matemático

Answers

The value of x, considering the similar triangles in this problem, is given as follows:

x = 2.652.

El valor de x es el seguinte:

x = 2.652.

What are similar triangles?

Two triangles are defined as similar triangles when they share these two features listed as follows:

Congruent angle measures, as both triangles have the same angle measures.Proportional side lengths, which helps us find the missing side lengths.

The proportional relationship for the side lengths in this triangle is given as follows:

x/3.9 = 3.4/5

Applying cross multiplication, the value of x is obtained as follows:

5x = 3.9 x 3.4

x = 3.9 x 3.4/5

x = 2.652.

More can be learned about similar triangles at brainly.com/question/14285697

#SPJ1

The cost of a notebook is rs 5 less than twice the cost of a pen.
a) write as linear equation in 2 variable
b)is (-1,2) a solution?

Answers

Answer:

a) the equation is, n = 2p - 5

b) Yes, (-1,2) is a solution of n = 2p-5

Step-by-step explanation:

The cost of a notebook is 5 less than twice the cost of a pen

let cost of notebook be n

and cost of pen be p

then we get the following relation,

(The cost of a notebook is 5 less than twice the cost of a pen)

n = 2p - 5

(2p = twice the cost of the pen)

b) Checking if (-1,2) is a solution,

[tex]n=2p-5\\-1=2(2)-5\\-1=4-5\\-1=-1\\1=1[/tex]

Hence (-1,2) is a solution

Linear Algebra

Question about additive inverse of vector space

1. Determine whether the set R2 with the operations

(x1,y1) + (x2,y2) = (x1x2,y1y2)

and

c(x1,y1) = (cx1,cy1)

solution(1)

This set is not a vector space because Axiom 5(additive inverse) fails.

The additive identity is (1,1) and so (0,0) has no additive inverse.

Axioms 7 and 8 also fail.

- I understood about additive identity, but I couldn't understand why (0,0) has no additive inverse.

- is it possible to be additive inverse as (0,0)?

2. Let V be the set of all positive real numbers. Determine whether V is a vector space with the following operations.

x + y = xy

cx = xc

Solution(2)

It is vector space.

The zero vector is 1 and additive inverse of x is 1/x.

(additive inverse) x + 1/x = x(1/x) = 1

- I don't understand why additive inverse is 1/x.

please help me understanding this concept

Answers

If we choose 1/x as the additive inverse of x, their sum is:

x + 1/x = (x^2 + 1) / x = 1

which is the additive identity in this set.

The additive inverse of a vector (x, y) in this set is defined as another vector (a, b) such that their sum is the additive identity (1, 1):

(x, y) + (a, b) = (1, 1)

Substituting the definition of the addition operation, we get:

(xa, yb) = (1, 1)

This implies that xa = 1 and yb = 1. If x or y is zero, then there is no solution for a or b, respectively. So, the vector (0, 0) does not have an additive inverse in this set.

The additive inverse of a positive real number x is its reciprocal 1/x, because:

x + 1/x = (x * x + 1) / x = (x^2 + 1) / x

Since x is positive, x^2 is positive, and x^2 + 1 is greater than x, so (x^2 + 1) / x is greater than 1. Therefore, if we choose 1/x as the additive inverse of x, their sum is:

x + 1/x = (x^2 + 1) / x = 1

which is the additive identity in this set.

Learn more about inverse here:

https://brainly.com/question/30339780

#SPJ11

6 Define Boundary value problem and solve the following BVP. y"+3y=0 y"+4y=0 y(0)=0 y(0)=-2 y(2π)=0 y(2TT)=3

Answers

The given problem is a boundary value problem (BVP). The solutions to the BVPs are y = 0, y = -2, y = 0, and y = 3.

A boundary value problem (BVP) is a type of mathematical problem that involves finding a solution to a differential equation subject to specified boundary conditions. In other words, it is a problem in which the solution must satisfy certain conditions at both ends, or boundaries, of the interval in which it is defined.

In this particular BVP, we are given two differential equations: y'' + 3y = 0 and y'' + 4y = 0. To solve these equations, we need to find the solutions that satisfy the given boundary conditions.

For the first differential equation, y'' + 3y = 0, the general solution is y = A * sin(sqrt(3)x) + B * cos(sqrt(3)x), where A and B are constants. Applying the boundary condition y(0) = 0, we find that B = 0. Thus, the solution to the first BVP is y = A * sin(sqrt(3)x).

For the second differential equation, y'' + 4y = 0, the general solution is y = C * sin(2x) + D * cos(2x), where C and D are constants. Applying the boundary conditions y(0) = -2 and y(2π) = 0, we find that C = 0 and D = -2. Thus, the solution to the second BVP is y = -2 * cos(2x).

However, we have been given additional boundary conditions y(2π) = 0 and y(2π) = 3. These conditions cannot be satisfied simultaneously by the solutions obtained from the individual BVPs. Therefore, there is no solution to the given BVP.

Since question is incomplete, the complete question iis shown below

"Define Boundary value problem and solve the following BVP. y"+3y=0 y"+4y=0 y(0)=0 y(0)=-2 y(2π)=0 y(2TT)=3"

Learn more about boundary value problem

brainly.com/question/31064079

#SPJ11

Use the Annihilator Method to solve: y+5 [alt form: y′′+10y′+25y=100sin(5x)]

Answers

To solve the differential equation y'' + 10y' + 25y = 100sin(5x) using the annihilator method, we assume a particular solution of the form y_p = Asin(5x) + Bcos(5x). The particular solution is y_p = 2sin(5x) - cos(5x).

The annihilator method is a technique used to solve non-homogeneous linear differential equations with constant coefficients.

In this case, the given differential equation is y'' + 10y' + 25y = 100sin(5x).

To find a particular solution, we assume a solution of the form y_p = Asin(5x) + Bcos(5x), where A and B are constants to be determined.

Taking the first and second derivatives of y_p, we have y_p' = 5Acos(5x) - 5Bsin(5x) and y_p'' = -25Asin(5x) - 25Bcos(5x).

Substituting these derivatives into the differential equation, we get:

(-25Asin(5x) - 25Bcos(5x)) + 10(5Acos(5x) - 5Bsin(5x)) + 25(Asin(5x) + Bcos(5x)) = 100sin(5x).

Simplifying the equation, we have -25Bcos(5x) + 50Acos(5x) + 25Bsin(5x) + 25Asin(5x) = 100sin(5x).

To satisfy this equation, the coefficients of the trigonometric functions on both sides must be equal.

Equating the coefficients, we get:

-25B + 50A = 0 (coefficients of cos(5x))

25A + 25B = 100 (coefficients of sin(5x)).

Solving these equations simultaneously, we find A = 2 and B = -1.

Therefore, the particular solution is y_p = 2sin(5x) - cos(5x).

Learn more about Annihilator Method :

brainly.com/question/32551388

#SPJ11

Which of the following shows the polynomial below written in descending
order?
3x3 +9x7-x+ 4x¹2
A. 9x7 + 4x¹2 + 3x³ - x
B. 4x¹2 + 3x³x+9x7
C. 3x³+4x12 + 9x7 - x
OD. 4x¹2 + 9x7 + 3x³ - x

Answers

The polynomial 3x^3 + 9x^7 - x + 4x^12 written in descending order is 4x^12 + 9x^7 + 3x^3 - x. Hence, option D is the correct answer.

In order to write the polynomial in descending order, we arrange the terms in decreasing powers of x.

Given polynomial: 3x^3 + 9x^7 - x + 4x^12

Let's rearrange the terms:

4x^12 + 9x^7 + 3x^3 - x

In this form, the terms are written from highest power to lowest power, which is the descending order.

Hence, the polynomial written in descending order is 4x^12 + 9x^7 + 3x^3 - x.

Therefore, option D is the correct answer as it shows the polynomial written in descending order.

For more such questions on polynomial, click on:

https://brainly.com/question/4142886

#SPJ8

Order -3, 5, -10, 16 from least to greatest. then order the same numbers from closest to zero to farthest from zero. next, describe how your lists are similar to each other. please answer the last part cause we are in need of help plllllllllllllllllleeeeeeeeeeeeeaaaaaaaaaaaaaaase.please thank you

Answers

The similarity lies in the fact that both lists contain the same set of numbers, but their order is determined by different criteria - one based on magnitude and the other based on distance from zero.

Let's order the numbers -3, 5, -10, and 16 as requested.

From least to greatest:

-10, -3, 5, 16

The ordered list from least to greatest is: -10, -3, 5, 16.

Now let's order the same numbers from closest to zero to farthest from zero:

-3, 5, -10, 16

The ordered list from closest to zero to farthest from zero is: -3, 5, -10, 16.

Regarding the similarity between the two lists, both lists contain the same set of numbers: -3, 5, -10, and 16. However, the ordering criteria are different in each case. In the first list, we order the numbers based on their magnitudes, whereas in the second list, we order them based on their distances from zero.

By comparing the two lists, we can observe that the ordering changes since the criteria differ. In the first list, the number -10 appears first because it has the smallest magnitude, while in the second list, -3 appears first because it is closest to zero.

Overall, the similarity lies in the fact that both lists contain the same set of numbers, but their order is determined by different criteria - one based on magnitude and the other based on distance from zero.

Learn more about  number  from

https://brainly.com/question/27894163

#SPJ11

Alyssa wants to measure the height of the flagpole at her school. She places a mirror on the ground 42feet from the flagpole then walks backwards until she is able to the top of the flagpole in the mirror. Her eyes are 5.2 feet above the ground and she is 9 feet from the mirror. To the nearest of a foot. what is the height of the flagpole

Answers

The height of the flagpole is approximately 6.615 feet. Rounding to the nearest foot, the height of the flagpole is 7 feet.

To determine the height of the flagpole, we can use similar triangles formed by Alyssa, the mirror, and the flagpole.

Let's consider the following measurements:

Distance from Alyssa to the mirror = 9 feet

Distance from the mirror to the base of the flagpole = 42 feet

Height of Alyssa's eyes above the ground = 5.2 feet

By observing the similar triangles, we can set up the following proportion:

(height of the flagpole + height of Alyssa's eyes) / distance from Alyssa to the mirror = height of the flagpole / distance from the mirror to the base of the flagpole

Plugging in the values, we have:

(x + 5.2) / 9 = x / 42

Cross-multiplying, we get:

42(x + 5.2) = 9x

Expanding the equation:

42x + 218.4 = 9x

Combining like terms:

42x - 9x = -218.4

33x = -218.4

Solving for x:

x = -218.4 / 33

x ≈ -6.615

Since the height of the flagpole cannot be negative, we discard the negative value.

Therefore, the height of the flagpole is approximately 6.615 feet.

For more such questions on height visit:

https://brainly.com/question/73194

#SPJ8

(a) Solve the following equations. Give your answer to 3 decimal places when applicable. (i) 12+3e ^+2 =15 [2 marks] (ii) 4ln2x=10 [2 marks] (b) The weekly demand and supply functions for a product given by p=−0.3x^2 +80 and p=0.5x^2 +0.3x+70 respectively, where p is the unit price in dollars and x is the quantity demanded in units of a hundred. (i) Determine the quantity supplied when the unit price is set at $100. [2 marks] (ii) Determine the equilibrium price and quantity. [2 marks]

Answers

a. The solutions to the equations are x = 0 and x ≈ 6.109 for (i) and (ii) respectively.

b. The equilibrium price and quantity are determined by setting the demand and supply functions equal, resulting in x ≈ 7.452 and the corresponding unit price.

(a) Solving the equations:

(i) 12 + [tex]3e^(2x)[/tex] = 15:

1. Subtract 12 from both sides: [tex]3e^(2x)[/tex] = 3.

2. Divide both sides by 3: [tex]e^(2x)[/tex] = 1.

3. Take the natural logarithm of both sides: 2x = ln(1).

4. Simplify ln(1) to 0: 2x = 0.

5. Divide both sides by 2: x = 0.

(ii) 4ln(2x) = 10:

1. Divide both sides by 4: ln(2x) = 10/4 = 2.5.

2. Rewrite in exponential form: 2x = [tex]e^(2.5)[/tex].

3. Divide both sides by 2: x = [tex](e^(2.5))[/tex]/2.

(b) Analyzing the demand and supply functions:

(i) To determine the quantity supplied when the unit price is set at $100:

1. Set p = 100 in the supply function: [tex]0.5x^2[/tex] + 0.3x + 70 = 100.

2. Subtract 100 from both sides: [tex]0.5x^2[/tex] + 0.3x - 30 = 0.

3. Use the quadratic formula to solve for x: x = (-0.3 ± √([tex]0.3^2[/tex] - 4*0.5*(-30))) / (2*0.5).

4. Simplify the expression inside the square root and solve for x.

(ii) To find the equilibrium price and quantity:

1. Set the demand and supply functions equal to each other: [tex]-0.3x^2[/tex]+ 80 =[tex]0.3x^2[/tex] + 0.3x + 70.

2. Simplify the equation and solve for x.

3. Calculate the corresponding unit price using either the demand or supply function.

4. The equilibrium price and quantity occur at the point where the demand and supply functions intersect.

Learn more about equilibrium price visit

brainly.com/question/29099220

#SPJ11

If 90° <0< 180° and sin 0 = 2/7. find cos 20.
A-41/49
B-8/49
C8/49
D41/49

Answers

Answer:  41/49  (choice D)

Work Shown:

[tex]\cos(2\theta) = 1 - 2\sin^2(\theta)\\\\\cos(2\theta) = 1 - 2\left(\frac{2}{7}\right)^2\\\\\cos(2\theta) = 1 - 2\left(\frac{4}{49}\right)\\\\\cos(2\theta) = 1-\frac{8}{49}\\\\\cos(2\theta) = \frac{49}{49}-\frac{8}{49}\\\\\cos(2\theta) = \frac{49-8}{49}\\\\\cos(2\theta) = \frac{41}{49}\\\\[/tex]

An algorithm process a given input of size n. If n is 4096, the run-time is 512 milliseconds. If n
is 16,384, the run-time is 2048 milliseconds. Determine
the efficiency.
the big-O notation.

Answers

The efficiency of the algorithm is O(n), as the run-time is directly proportional to the input size.

To determine the efficiency of an algorithm, we analyze how the run-time of the algorithm scales with the input size. In this case, we have two data points: for n = 4096, the run-time is 512 milliseconds, and for n = 16,384, the run-time is 2048 milliseconds.

By comparing these data points, we can observe that as the input size (n) doubles from 4096 to 16,384, the run-time also doubles from 512 to 2048 milliseconds. This indicates a linear relationship between the input size and the run-time. In other words, the run-time increases proportionally with the input size.

Based on this analysis, we can conclude that the efficiency of the algorithm is O(n), where n represents the input size. This means that the algorithm's run-time grows linearly with the size of the input.

It's important to note that big-O notation provides an upper bound on the algorithm's run-time, indicating the worst-case scenario. In this case, as the input size increases, the run-time of the algorithm scales linearly, resulting in an O(n) efficiency.

Learn more about algorithm

brainly.com/question/28724722

#SPJ11.

linear algebra 1 2 0 Question 5. (a) Find all values a, b that make A = 2 a 0 positive definite. Hint: it 0 0 b suffices to 2 0 b check that the 3 subdeterminants of A of dimension 1, 2 and 3 respectively with upper left corner on the upper left corner of A are positive. =
(b) Find the Choleski decomposition of the matrix when a = 5, b = 1.
(c) Find the Choleski decomposition of the matrix when a = 3, b = 1

Answers

a. The values of a and b that make A positive definite are a ∈ ℝ and b >0.

b. The Cholesky decomposition of A with a = 5 and b = 1 is:

A = LL^T, where L = |√2 0 | |(5/√2) (1/√2)|

c. The Cholesky decomposition of A with a = 3 and b = 1 is:A = LL^T, where L = |√2 0| |(3/√2) (1/√2)|

(a) To make the matrix A = |2 a|

|0 b| positive definite, we need to ensure that all the leading principal minors (sub determinants) of A are positive.

The leading principal minors of A are:

The 1x1 sub determinant: |2|

The 2x2 sub determinant: |2 a|

|0 b|

For A to be positive definite, both of these sub determinants need to be positive.

The 1x1 sub determinant is 2. Since 2 is positive, this condition is satisfied.

The 2x2 sub determinant is (2)(b) - (0)(a) = 2b. For A to be positive definite, 2b needs to be positive, which means b > 0.

Therefore, the values of a and b that make A positive definite are a ∈ ℝ and b > 0.

(b) When a = 5 and b = 1, the matrix A becomes:

A = |2 5| |0 1|

To find the Cholesky decomposition of A, we need to find a lower triangular matrix L such that A = LL^T.

Let's solve for L by performing the Cholesky factorization:

L = |√2 0 | |(5/√2) (1/√2)|

The Cholesky decomposition of A with a = 5 and b = 1 is:

A = LL^T, where L = |√2 0 | |(5/√2) (1/√2)|

(c) When a = 3 and b = 1, the matrix A becomes:

A = |2 3| |0 1|

To find the Cholesky decomposition of A, we need to find a lower triangular matrix L such that A = LL^T.

Let's solve for L by performing the Cholesky factorization:

L = |√2 0| |(3/√2) (1/√2)|

The Cholesky decomposition of A with a = 3 and b = 1 is:

A = LL^T, where L = |√2 0| |(3/√2) (1/√2)|

Learn more about: Cholesky decomposition

https://brainly.com/question/30764630

#SPJ11

(3.2) We have a thin metal plate that occupies the region in the xy-plane x 2 +y 2 ≤16. If f(x,y)=2x 2 +3y 2 −4x−5 denotes the temperature (in degrees C ) at any point on the plate, determine the highest and lowest temperatures on the plate. (3.3) Evaluate the iterated integral

Answers

The highest temperature on the plate is 11 degrees Celsius and the lowest temperature is -7 degrees Celsius.

To determine the highest and lowest temperatures on the metal plate, we need to find the maximum and minimum values of the temperature function f(x, y) within the region [tex]x^2[/tex] + [tex]y^2[/tex] ≤ 16.

First, let's find the critical points of the function within the region. We can do this by finding where the partial derivatives of f(x, y) with respect to x and y are equal to zero:

∂f/∂x = 4x - 4 = 0

∂f/∂y = 6y = 0

From the first equation, we get 4x = 4, which gives x = 1. From the second equation, we get y = 0.

So, the critical point within the region is (1, 0).

Now, let's check the boundaries of the region [tex]x^2[/tex]  + [tex]y^2[/tex] = 16. We can use Lagrange multipliers to find the extrema on the boundary.

Consider the function g(x, y) = [tex]x^2[/tex]  + [tex]y^2[/tex] - 16, which represents the boundary constraint. We want to find the extrema of f(x, y) subject to the constraint g(x, y) = 0.

Using Lagrange multipliers, we set up the following equations:

∇f = λ∇g

g(x, y) = 0

∇f = (4x - 4, 6y)

∇g = (2x, 2y)

Setting the components equal, we get:

4x - 4 = 2λx

6y = 2λy

Simplifying, we have:

2x - 2 = λx

3y = λy

From the first equation, we get 2 - 2 = λ, which gives λ = 0. From the second equation, we get 3y = λy. Since λ = 0, we have 3y = 0, which gives y = 0.

Substituting y = 0 into the equation 2x - 2 = λx, we get 2x - 2 = 0, which gives x = 1.

So, the critical point on the boundary is (1, 0).

Now, we need to evaluate the temperature function f(x, y) at the critical points.

f(1, 0) = 2[tex](1)^2[/tex] + 3[tex](0)^2[/tex] - 4(1) - 5 = 2 - 4 - 5 = -7

So, the lowest temperature on the plate is -7 degrees Celsius.

Next, let's evaluate f(x, y) at the highest point on the boundary, which is at (4, 0) since [tex]x^{2}[/tex] + [tex]y^2[/tex]  = 16.

f(4, 0) = 2[tex](4)^2[/tex] + 3[tex](0)^2[/tex] - 4(4) - 5 = 32 - 16 - 5 = 11

So, the highest temperature on the plate is 11 degrees Celsius.

To learn more about temperature here:

https://brainly.com/question/7510619

#SPJ4

Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t. ) L−1{s2+8s1}

Answers

To find the inverse Laplace transform of [tex](1/s^2) - (720/s^7)[/tex]:

1. Apply the property that the inverse Laplace transform of [tex](1/s^2)[/tex] is t.

2. Apply the property that the inverse Laplace transform of [tex](1/s^7) is (1/6!) t^6[/tex].

3. Use linearity to subtract the two results and obtain the inverse Laplace transform as f(t) = t - [tex]t^6/720[/tex].

To find the inverse Laplace transform of [tex]\lim_{s \to \(-1} {(1/s^2) - (720/s^7)}[/tex], we can use algebraic manipulation and the properties of Laplace transforms.

1. Recall that the Laplace transform of[tex]t^n[/tex] is given by [tex]\lim_{t^n} = n!/s^(n+1)[/tex], where n is a non-negative integer.

2. The inverse Laplace transform of [tex](1/s^2[/tex]) is t, using the property mentioned in step 1.

3. The inverse Laplace transform of ([tex]1/s^7[/tex]) can be found using the same property. We have:

[tex]\lim_{n \to \(-1} {1/s^7} = (1/6!) t^6[/tex]

4. Now, let's apply Theorem 7.2.1, which states that the inverse Laplace transform is linear. This allows us to take the inverse Laplace transform of each term separately and then sum the results.

5. Applying Theorem 7.2.1, we have:

 [tex]\lim_{s \to \(-1}{(1/s^2) - (720/s^7)} = \lim_{s \to \(-1} {1/s^2} - \lim_{s \to \(-1}{720/s^7}[/tex]

6. Substituting the inverse Laplace transforms from steps 2 and 3, we get:

[tex]\lim_{s \to \(-1} {(1/s^2) - (720/s^7)} = t - (1/6!) t^6[/tex]

7. Simplifying the expression, we have found the inverse Laplace transform:

  f(t) = t - [tex]t^6[/tex]/720

Therefore, the inverse Laplace transform of[tex]\lim_{s\to \(-1} {(1/s^2) - (720/s^7)}[/tex] is given by f(t) = t - [tex]t^6[/tex]/720.

Learn more about inverse Laplace transform visit

brainly.com/question/33104624

#SPJ11

Since question is incomplete, so complete question is:

. The Deli counter at Mr. Steppe’s grocery store has an old scale that records the weight of sandwich meat in a whole number of ounces only, and it doesn’t "jump" to the next ounce until that weight is reached. That is, an item weighing 4.9999 ounces will register as 4 ounces. To make up for this feature, all his customers know that they will pay $1.50 for the first ounce (or fraction thereof) of Swiss cheese and that they will pay $.50 for each ounce (or fraction thereof) after that.
a. Draw a well-defined graph that represents the pricing structure of the Swiss cheese.
b. How much will a customer have to pay for a purchase of 12 ounces of this cheese?
c. How many ounces of Swiss cheese could be purchased for$10.50?

Answers

a) Graph representing the pricing structure of Swiss cheese is shown below:

b) A customer will have to pay $5.50 for the purchase of 12 ounces of Swiss cheese.

We can obtain this by calculating the first ounce at a cost of $1.50, then the next six ounces (for a total of seven ounces) at a cost of $0.50 per ounce, and the remaining five ounces at a cost of $1.00 per ounce.

The cost of the Swiss cheese for 1 ounce is $1.50, for the next 6 ounces, the cost would be (6 * $0.50) $3.00, and the last 5 ounces will cost (5 * $1.00) $5.00.

Adding all three costs yields:

$1.50 + $3.00 + $5.00 = $9.50

Therefore, a customer will have to pay $9.50 for 11 ounces of Swiss cheese.

But he/she is purchasing 12 ounces of Swiss cheese.

So, adding $1.00 to $9.50 yields:

$9.50 + $1.00 = $10.50

Therefore, a customer will have to pay $5.50 for the purchase of 12 ounces of Swiss cheese.c) $10.50 can buy 7 ounces of Swiss cheese.

For the first ounce, $1.50 will be charged, and the remaining $9.00 will purchase 18 more ounces.

But, each ounce costs $0.50 after the first ounce.

Thus, dividing $9.00 by $0.50 gives 18 ounces.

Adding the first ounce gives:

1 + 18 = 19

Therefore, $10.50 can purchase 19 ounces of Swiss cheese.

But we are asked to determine how many ounces of Swiss cheese can be purchased for $10.50.

Therefore, we must now subtract one ounce since it costs

$1.50.19 - 1 = 18

Therefore, $10.50 can buy 18 ounces of Swiss cheese.

To know more about determine  visit:

https://brainly.com/question/29898039

#SPJ11

A customer can purchase 19 ounces of Swiss cheese for $10.50.

a) The graph that represents the pricing structure of Swiss cheese is shown below:

b) A customer needs to pay $8.00 for a purchase of 12 ounces of Swiss cheese.

c) The number of ounces of Swiss cheese that can be purchased for $10.50 can be calculated as follows:

Let's say a customer purchases x ounces of cheese.

Then the equation that represents the price is given by;

price = $1.50 + $.50(x - 1)

For $10.50, the equation becomes:

$10.50 = $1.50 + $.50(x - 1)

Simplifying the above equation,

$9 = $.50(x - 1)18 = x - 1x = 19

Therefore, a customer can purchase 19 ounces of Swiss cheese for $10.50.

To know more about graph, visit:

https://brainly.com/question/17267403

#SPJ11

An employee produces 17 parts during an 8-hour shift in which he makes $109 per shift. What is the labor content (abor dollar per unit) of the product

Answers

Labor content (labor dollar per unit) is the total cost of labor required to produce one unit of a product. It can be calculated by dividing the total labor cost by the number of units produced.

In this scenario, we are given that an employee produces 17 parts during an 8-hour shift and earns $109 per shift.

To calculate the labor content, we first determine the labor cost per hour. This is done by dividing the total amount earned in the 8-hour shift by 8.

Labor cost per hour = $109 ÷ 8 = $13 per hour

Next, we calculate the number of parts produced per hour by dividing the total number of parts produced (17) by the duration of the shift (8 hours).

Parts produced per hour = 17 ÷ 8 = 2.125 parts per hour

Finally, we calculate the labor cost per part by dividing the labor cost per hour by the number of parts produced per hour.

Labor cost per part = $13 ÷ 2.125 = $6.12 per part

Therefore, the labor content (labor dollar per unit) of the product is $6.12 per part.

Learn more about labour content

https://brainly.com/question/14701647

#SPJ11

The function f(x)=x^3−4 is one-to-one. Find an equation for f−1(x), the inverse function. f−1(x)= (Type an expression for the inverse. Use integers or fractio.

Answers

The expression for the inverse function f^-1(x) is:

[tex]`f^-1(x) = (x + 4)^(1/3)`[/tex]

An inverse function or an anti function is defined as a function, which can reverse into another function. In simple words, if any function “f” takes x to y then, the inverse of “f” will take y to x. If the function is denoted by 'f' or 'F', then the inverse function is denoted by f-1 or F-1.

Given function is

[tex]f(x) = x³ - 4.[/tex]

To find the inverse function, let y = f(x) and swap x and y.

Then, the equation becomes:

[tex]x = y³ - 4[/tex]

Next, we will solve for y in terms of x:

[tex]x + 4 = y³ y = (x + 4)^(1/3)[/tex]

Thus, the inverse function is:

[tex]f⁻¹(x) = (x + 4)^(1/3)[/tex]

To know more about function  visit :

https://brainly.com/question/11624077

#SPJ11

Question 2 [25 points] Consider the function f(x,y)=x root y ​ −2x^2 +y a) [15 points] Find the directional derivative of f at the point P(−1,4) in the direction from P to Q (2,0). b) [10 points] Determine the direction that f has the minimum rate of change at the point P(−1,4) ? What is the minimum rate of change?

Answers

The directional derivative of the function f at the point P(-1,4) in the direction from P to Q (2,0) is -6√2. The direction that f has the minimum rate of change at the point P(-1,4) is in the direction of the vector (-1, 2). The minimum rate of change is -20.

To find the directional derivative of f at point P(-1,4) in the direction from P to Q(2,0), we need to compute the gradient of f at P and then take the dot product with the unit vector in the direction of P to Q.

First, let's compute the gradient of f. The partial derivative of f with respect to x is given by ∂f/∂x = √y - 4x, and the partial derivative of f with respect to y is ∂f/∂y = (1/2) x/√y + 1.

Evaluating the partial derivatives at P(-1,4), we get ∂f/∂x = √4 - 4(-1) = 2 + 4 = 6, and ∂f/∂y = (1/2)(-1)/√4 + 1 = -1/4 + 1 = 3/4.

Next, we need to determine the unit vector in the direction from P to Q. The vector from P to Q is given by Q - P = (2-(-1), 0-4) = (3, -4). To obtain the unit vector, we divide this vector by its magnitude: ||Q-P|| = √(3^2 + (-4)^2) = √(9 + 16) = √25 = 5. So, the unit vector in the direction from P to Q is (3/5, -4/5).

Finally, we calculate the directional derivative by taking the dot product of the gradient and the unit vector: Df = (∂f/∂x, ∂f/∂y) · (3/5, -4/5) = (6, 3/4) · (3/5, -4/5) = 6 * (3/5) + (3/4) * (-4/5) = 18/5 - 12/20 = 36/10 - 6/10 = 30/10 = 3.

Therefore, the directional derivative of f at point P(-1,4) in the direction from P to Q(2,0) is -6√2.

To determine the direction that f has the minimum rate of change at point P(-1,4), we need to find the direction in which the directional derivative is minimized. This corresponds to the direction of the negative gradient vector (-∂f/∂x, -∂f/∂y) at point P. Evaluating the negative gradient at P, we have (-∂f/∂x, -∂f/∂y) = (-6, -3/4).

Hence, the direction that f has the minimum rate of change at point P(-1,4) is in the direction of the vector (-1, 2), which is the same as the direction of the negative gradient vector. The minimum rate of change is given by the magnitude of the negative gradient vector, which is |-6, -3/4| = √((-6)^2 + (-3/4)^2) = √(36 + 9/16) = √(576/16 +

9/16) = √(585/16) = √(585)/4.

Learn more about derivative

brainly.com/question/32963989

#SPJ11

The 1st and 10th terms of an arithmetic series are −1 and 10,
respectively.
Find the sum of the first 10 terms.

Answers

The sum of the first 10 terms of the arithmetic series is 45.

To find the sum of the first 10 terms of an arithmetic series, we can use the formula for the sum of an arithmetic series:

Sn = (n/2) * (a1 + an)

where Sn represents the sum of the first n terms, a1 is the first term, and an is the nth term.

Given that the first term (a1) is -1 and the 10th term (an) is 10, we can substitute these values into the formula to find the sum of the first 10 terms:

S10 = (10/2) * (-1 + 10)

= 5 * 9

= 45

Therefore, the sum of the first 10 terms of the arithmetic series is 45.

Learn more about arithmetic sequence at https://brainly.com/question/25848203

#SPJ11

Consider the following model: yi = β0 + β1xi + ui
Where E(ui |xi) = 0 and Var(ui |xi) = σ^2xi^2
1. Is the OLS estimator of β1 still unbiased? Show your proof.
2. Derive Var(βˆ 1|x), what kind of problem do we face here?
3. Propose a new estimator to correct the above problem.

Answers

The OLS estimator of β1, denoted as βˆ1, is still unbiased. It is calculated using the formula:

βˆ1 = Σ(xi - x)(yi - y) / Σ(xi - x)^2 = Σ(xi - x)yi / Σ(xi - x)^2

Here, xi represents the ith observed value of the regressor x, x is the sample mean of x, yi is the ith observed value of the dependent variable y, and y is the sample mean of y. The expected value of the OLS estimator of β1 is given by:

E(βˆ1) = β1

Therefore, the OLS estimator of β1 remains unbiased.

The variance of the OLS estimator, denoted as Var(βˆ1|x), can be derived as follows:

Var(βˆ1|x) = Var{Σ(xi - x)yi / Σ(xi - x)^2|x} = 1 / Σ(xi - x)^2 * Σ(xi - x)^2 Var(yi|x) = σ^2 / Σ(xi - x)^2

In this problem, there is heteroscedasticity, which means that Var(ui|xi) is not constant.

To address the issue of heteroscedasticity, the Weighted Least Squares (WLS) estimator can be used. The WLS estimator assigns a weight of 1 / xi^2 to each observation i. The formula for the WLS estimator is:

βWLS = Σ(wi xi yi) / Σ(wi xi^2)

Here, wi represents the weight assigned to each observation.

The expected value of the WLS estimator, E(βWLS), is equal to the OLS estimator, βOLS, which means it is also unbiased for β1.

The variance of the WLS estimator, Var(βWLS), is given by:

Var(βWLS) = 1 / Σ(wi xi^2)

where wi = 1 / Var(ui|xi), taking into account the heteroscedasticity.

The WLS estimator is considered more efficient than the OLS estimator because it incorporates information about the heteroscedasticity of the errors.

Learn More about OLS estimator

https://brainly.com/question/13771038

#SPJ11

Exercise 6.5. Find a basis and the dimension for the solution space of following homogeneous systems of linear equations. (iii). x1−4x2+3x3−x4=0
2x1−8x2+6x3−2x4=0

Answers

The given system of linear equations is:x1 - 4x2 + 3x3 - x4 = 02x1 - 8x2 + 6x3 - 2x4 = 0 We can write the augmented matrix corresponding to this system as follows:A = [1 -4 3 -1 | 0; 2 -8 6 -2 | 0]We will now use elementary row operations to obtain the row echelon form of the matrix A.

Then we can read the solution of the system directly from this row echelon form.We first subtract twice the first row from the second row to obtain:A = [1 -4 3 -1 | 0; 0 0 0 0 | 0]Now we see that the second row of A is identically zero. This means that the rank of the matrix A is 1. We also notice that there are 4 variables and only one independent equation in the system, which means that the dimension of the solution space is 4 - 1 = 3.We can now write the general solution to the system as follows:x1 = 4x2 - 3x3 + x4x2 is free variable.

We will now find a basis for this solution space. This amounts to finding three linearly independent vectors in R⁴ that lie in the solution space of the system. We can obtain three such vectors by setting the free variable x2 = 1, x3 = 0, x4 = 0 and solving for x1:Vector v₁ = (1, 1, 0, 0)Next, we can obtain another vector by setting x2 = 0, x3 = 1, x4 = 0 and solving for x1:Vector v₂ = (3, 0, 1, 0).

To know more about echelon visit:

https://brainly.com/question/28767094

#SPJ11



Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

What is the correct relationship between the angle measures of ΔPQR ?


F m∠R < m∠Q < m∠P

G m∠R < m∠ P H m∠Q < m∠P J m∠P < m∠Q

Answers

The correct relationship between the angle measures of triangle ΔPQR is: H m∠Q < m∠P

In a triangle, the sum of the interior angles is always 180 degrees. Therefore, the relationship between the angle measures of ΔPQR can be determined based on their magnitudes.
Since angle Q is smaller than angle P, we can conclude that m∠Q < m∠P. This is because if angle Q were greater than angle P, the sum of angles Q and R would be greater than 180 degrees, which is not possible in a triangle.
On the other hand, we cannot determine the relationship between angle R and the other two angles based on the given answer choices. The options provided do not specify the relationship between angle R and the other angles.
Therefore, the correct relationship is that angle Q is smaller than angle P (m∠Q < m∠P), and we cannot determine the relationship between angle R and the other angles based on the given answer choices.

Learn more about triangle here:

https://brainly.com/question/2773823

#SPJ11

Other Questions
Mention and explain how the educational materials that areeffective in teaching the preschool student with THD areapplied. Two children (m=29.0 kg each) stand opposite each other on the edge of a merry-go-round. The merry-go-round, which has a mass of 1.6410 2 kg and a radius of 1.4 m, is spinning at a constant rate of 0.30rev/s. Treat the two children and the merry-go-round as a system. (a) Calculate the angular momentum of the system, treating each child as a particle. (Give the magnitude.) kgm 2 /s (b) Calculate the total kinetic energy of the system. ] (c) Both children walk half the distance toward the center of the merry-go-round. Calculate the final angular speed of the system. rad/s A millisievert is equivalent toA) I rem B) 0.1 rem: D) 0.001 re C) 0.01 rem Three point charges are located as follows: +2 C at (2,2), +2 C at (2,-2), and +5 C at (0,5). Draw the charges and calculate the magnitude and direction of the electric field at the origin. (Note: Draw fields due to each charge and their components clearly, also draw the netfield on the same graph.) After reading the question, select your answer and click the Submit Answer button. To temporarily skip a question, click the Skip Question button. You will have an end of the test. To go back and edit a previously answered question or to answer a skipped question, click the Review Edit Your Answer buttonEdit Your AnswerQUESTIONWhich of the following can help management create a cooperative company culture?POSSIBLE ANSWERSDividing quality efforts by production stageO Communicating openly with employees.Tracking and monitoring financial resultsDecreasing employee responsibilities WHO EVER ANSWERS UNDER 5 MINS GETS 55 POINTSS AND THANKS IF U ANSWERWhose point of view is shown in "The Players"?the players, the classmates, and the bullythe players, the classmates, and the teacherthe classmates, the bully, and John Coltranethe classmates, the bully, and Miles Davis Find the surface area of the sphere or hemisphere. Round to the nearest tenth.sphere: area of great circle 32ft How to answer this KSAAbility to prepare forms, records, tables, and reports To increase air movement in breathing, patients with emphysema increase their force ofbreathing by utilising accessory muscles. Explain how using accessory muscles allows forgreater air movement in and out of the lungs. n the figure, 1=1.00107 Cq1=1.00107 C and 2=6.00107 C.q2=6.00107 C. q1 is at (5, 0) and q2 is at (8, 0).What is the magnitude E of the electric field at the point (x,y)=(0.00 cm,3.00 cm)?(x,y)=(0.00 cm,3.00 cm)?What is the angle thetaE that the direction of the electric field makes at that position, measuring counterclockwise from the positive x-x-axis?What is the magnitude F of the force acting on an electron at that position?What is the angle thetaF of the force acting on an electron at that position, measuring counterclockwise from the positive x-x-axis? How many moles of carbon are in 300 mg of graphite Put yourself in the position of someone who is establishing an organization from the ground up. What type of leader would you want to be? How would you create that image or perception? Do you create a mission statement for the firm, a code of conduct? What process would you use to do so? Would you create an ethics and/or compliance program and how would you then integrate the mission statement and program throughout your organization? What do you anticipate might be your successes and challenges? A Honda Civic travels in a straight line along a road. Its distancex from a stop sign is given as a function of timet by the equation x(t) = t2- t3,where =1.60 m/s2 and = 0.0450 m/s3. Calculate the averagevelocity of the car for the following time intervals.(a) t = 0 to t = 1.60 s(b) t = 0 to t = 2.60 s(c) t = 1.60 s to t= 2.60 s An asset was issued 14 months ago. The asset promised just one cash flow of $3000, to be paid to the owner exactly 6 years from the date that the asset was issued. If the required rate of return on this asset is 6%, then what is its present value? Round your answer to the nearest dollar. What is 1,0000 2,0000 Myriad Genetics 1) patented "life" materials, or genetic materials (the BRCA1 and BRCA2 genes) 2) assisted in Dr. Ananda Chakrabarty's work on the pseudomonas "superbug" 3) legally controlled the right to test for certain genes 4) a. and b. 5) b. and c. 6) a. and c. 7) a., b., and c. What is the pressure inside a 310 L container holding 103.9 kg of argon gas at 21.0 C ? X Incorrect; Try Again; 4 attempts remaining In 1-2 pages, explain the difference between burglary and larceny. Provide and example of each. Are these types of cases easy to solve? What is the success rate of solving these types of cases in your jurisdiction? Oftentimes, employees would get to hear wonderful advice from the management of organizations. One such advice is that employees must leave all personal issues upon entering the premises in the workplace. Often times too, and more so if the managers or executives are familiar with Organizational Behavior (maybe because they took Organizational Behavior during university), the concept of Organizational Citizenship behavior are conjured to implore employees to leave out personal problems out of the workplace.By applying the Interactionist Perspective, illustrate the fallacy of the above statement that one can simply leave personal problems out of the workplace. 5 marksBy using the Two Factor Theory (also known as Herzberg's motivation-hygiene theory) suggest a better way how business organizations can overcome the unavoidable and negative impact of personal problems spilling over in the workplace. Which of the following is true of Milgrams famous study on obedience? choose best answerThe "learner," who had a heart condition, ended up dying from the effect of the electric shocksMost participants backed out of the experiment early on, since they didnt feel comfortable delivering electric shocksNearly two-thirds of participants continued to deliver electric shocks even after the "learner" screamed and fell silentAll participants continued to deliver electric shocks after the "learner" screamed, and most seemed to enjoy delivering the shocks Steam Workshop Downloader