Part A List these compounds in order of increasing boiling point: HBr. HF, HI HCL Rank from least to most. To rank items as equivalent, overlap them. Reset Help Most Least

Answers

Answer 1

To rank these compounds in order of increasing boiling point, we would have: HCl < HBr < HI < HF

How to rank the compounds

To rank the compound in the order of increasing boiling points, starting from the lowest to the highest, we will first get the designated boiling points of each of them as follows:

The boiling point of HCl = -85.05 °C

The boiling point of HBr = -66 °C

The boiling point of Hl = -35.15

The boiling point of HF = 19.5 °C

Given these figures, we can represent the list in a ranked form as stated above.

Learn more about boiling points here:

https://brainly.com/question/40140

#SPJ4


Related Questions

An argon laser has a green wavelength of 514 nm. Plank's constant is 6.63 x 10-34 J-s, and the speed of light is 3.00 x 10³ m/s. What is the photon energy?

Answers

The photon energy of the argon laser with a green wavelength of 514 nm is approximately 1.22 x 10^(-19) Joules.

To calculate the photon energy, we can use the equation:

E = hc/λ

where:

E is the energy of the photon,

h is Planck's constant (6.63 x 10^(-34) J-s),

c is the speed of light (3.00 x 10^8 m/s),

and λ is the wavelength of the light (514 nm).

First, let's convert the wavelength from nanometers to meters:

λ = 514 nm = 514 x 10^(-9) m

Now we can plug the values into the equation:

E = (6.63 x 10^(-34) J-s)(3.00 x 10^8 m/s) / (514 x 10^(-9) m)

Calculating the expression:

E = 1.22 x 10^(-19) J

Learn more about energy of photon here: brainly.com/question/19385998

#SPJ11

What is the frequency of a sound wave with a wavelength of 2.81 m
traveling in room-temperature air (v
= 340 m/s)?

Answers

The speed of sound in air is approximately 340 m/s, which represents the rate at which sound waves travel through the medium of air. So, the frequency of the sound wave is approximately 121.00 Hz.  It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.

The speed of sound in air is approximately 340 m/s. The formula to calculate the frequency of a wave is given by:

frequency = speed / wavelength

Substituting the given values:

frequency = 340 m/s / 2.81 m

frequency ≈ 121.00 Hz

Therefore, the frequency of the sound wave is approximately 121.00 Hz.  It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.

To learn more about, speed of sound, click here, https://brainly.com/question/32259336

#SPJ11

A nucleus contains 68 protons and 92 neutrons and has a binding energy per nucleon of 3.82 MeV. What is the mass of the neutral atom ( in atomic mass units u)? = proton mass = 1.007277u H = 1.007825u ¹n = 1.008665u u = 931.494MeV/c²

Answers

The mass of the neutral atom, considering a nucleus with 68 protons and 92 neutrons, a binding energy per nucleon of 3.82 MeV, and the provided atomic mass units, appears to be -449.780444 u.

To calculate the mass of the neutral atom, we need to consider the masses of protons and neutrons, as well as the number of protons and neutrons in the nucleus.

Number of protons (Z) = 68

Number of neutrons (N) = 92

Binding energy per nucleon (BE/A) = 3.82 MeV

Proton mass = 1.007277 u

Neutron mass = 1.008665 u

Atomic mass unit (u) = 931.494 MeV/c²

let's calculate the total number of nucleons (A) in the nucleus:

A = Z + N

A = 68 + 92

A = 160

we can calculate the total binding energy (BE) of the nucleus:

BE = BE/A * A

BE = 3.82 MeV * 160

BE = 611.2 MeV

let's calculate the mass of the neutral atom in atomic mass units (u):

Mass = (Z * proton mass) + (N * neutron mass) - BE/u

Mass = (68 * 1.007277 u) + (92 * 1.008665 u) - (611.2 MeV / 931.494 MeV/c²)

Converting MeV to u using the conversion factor (1 MeV/c² = 1/u):

Mass ≈ (68 * 1.007277 u) + (92 * 1.008665 u) - (611.2 u)

Mass ≈ 68.476876 u + 92.94268 u - 611.2 u

Mass ≈ -449.780444 u

Learn more about binding energy: brainly.com/question/10095561

#SPJ11

A large, open-topped water tank is being filled from above by a 1.0-cm-diameter hose. The water in the hose has a uniform speed of 13 cm/s. Meanwhile, the tank springs a leak at the bottom. The hole has a diameter of 0.70 cm. Determine the equilibrium level heq of the water in the tank, measured relative to the bottom, if water continues flowing into the tank at the same rate.

Answers

The equilibrium level (heq) of the water in the tank, measured relative to the bottom, is approximately 1.68 cm.

1. Calculate the cross-sectional area of the hose:

A_in = π × (0.5 cm)^2

= 0.785 cm^2

2. Calculate the cross-sectional area of the leak:

A_out = π × (0.35 cm)^2

= 0.385 cm^2

3. Calculate the velocity of the water leaving the tank:

v_out = (A_in × v_in) / A_out

= (0.785 cm^2 × 13 cm/s) / 0.385 cm^2

≈ 26.24 cm/s

4. Calculate the equilibrium level of the water in the tank:

heq = (Q_in / A_out) / v_out

= (A_in × v_in) / (A_out × v_out)

= (0.785 cm^2 × 13 cm/s) / (0.385 cm^2 × 26.24 cm/s)

≈ 1.68 cm

Therefore, the equilibrium level (heq) of the water in the tank, measured relative to the bottom, is approximately 1.68 cm.

Learn more about equilibrium: https://brainly.com/question/517289

#SPJ11

A block of mass 2.0 kg starts to slide from rest down a frictionless quarter circle track of radius 5.00m. At the base of the track, there is a 10.0- meter rough patch with a coefficient of kinetic friction of 0.24 and a length of 7.50 meters. Following the rough patch, the block slides on a frictionless surface until it compresses a spring coming to rest as the spring is fully compressed a distance of 0.2m.
a. Find the speed of the block at the base of the circular ramp.
b. Find the work done by friction.
c. Find the spring constant k for the spring.

Answers

Kinetic friction is the force that opposes the motion of two surfaces that are in contact and sliding across each other. It is a type of friction that occurs when two objects are moving relative to each other.

a. The speed of the block at the base of the circular ramp is v=9.89m/s.

b. The work done by the frictional force is W = 35.28J.

c. The spring constant of the spring is k = 4890N

a) Applying equations of motion

Vertical velocity at the base of the circular ramp is given by

v²=u²+2gS

v²=2gs =

2x9.8x5

= 98

v=9.89m/s

Therefore the speed of the block at the base of the circular ramp is v=9.89m/s.

b) Expression for the work done is

W = F Xd

= μ × mg x 7.5

= 0.24 x 2 x 9.8 x 7.5

W=35.28J

Therefore the work done by the frictional force is W = 35.28J.

(c) Applying conservation of energy

The energy of the block at the base of the ramp = Potential energy of the spring

1/2 mv² = 1/2 kx²

k=mv²/x²

2× (9.89)²/0.2²

k=4890N

Therefore the spring constant of the spring is k = 4890N

To know more about Kinetic friction:

https://brainly.com/question/30886698

#SPJ4

A brick with a mass of \( 10 \mathrm{~kg} \) and a volume of \( 0.01 \mathrm{~m}^{3} \) is submerged in a fluid that has a density of 800 \( \mathrm{kg} / \mathrm{m}^{3} \). The brick will sink in the

Answers

When an object is submerged in a fluid, it will either sink, float, or be suspended in the fluid depending on the densities of the object and the fluid. In this case, we are given a brick with a mass of 10 kg and a volume of 0.01 m³ that is submerged in a fluid with a density of 800 kg/m³.

Let's determine whether the brick will sink or float:

We can determine whether the brick will sink or float by its density to the density of the fluid. If the density of the object is greater than the density of the fluid, the object will sink. If the density of the object is less than the density of the fluid, the object will float. If the density of the object is equal to the density of the fluid, the object will be suspended in the fluid.

The density of the brick can be calculated as follows:

density = mass/volume

density = 10 kg/0.01 m³

density = 1000 kg/m³

Therefore, the brick has a density of 1000 kg/m³, which is greater than the density of the fluid (800 kg/m³). Therefore, the brick will sink in the fluid. Hence, the given brick will sink in the fluid as its density is greater than the density of the fluid. The density of the brick is calculated as

density = mass/volume

= 10 kg/0.01 m³

= 1000 kg/m³

and the density of the fluid is given as 800 kg/m³.

As the density of the brick is more than that of the fluid, it will sink.

To know more about submerged visit :

https://brainly.com/question/30479834

#SPJ11

For a certain p-n junction diode, the saturation current at room temperature (20°C) is 0.950 mA. Pall A What is the resistance of this diode when the voltage across it is 86.0 mV? Express your answer"

Answers

The resistance of the diode at a voltage of 86.0 mV is approximately 3.371 Ω.

The resistance (R) of a diode can be approximated using the Shockley diode equation:

I = Is * (exp(V / (n * [tex]V_t[/tex]) - 1)

Where:

I is the diode current,

Is is the saturation current,

V is the voltage across the diode,

n is the ideality factor, typically around 1 for a silicon diode,

[tex]V_t[/tex]is the thermal voltage, approximately 25.85 mV at room temperature (20°C).

In this case, we are given the saturation current (Is) as 0.950 mA and the voltage (V) as 86.0 mV.

Let's calculate the resistance using the given values:

I = 0.950 mA = 0.950 * 10⁻³A

V = 86.0 mV = 86.0 * 10⁻³ V

[tex]V_t[/tex] = 25.85 mV = 25.85 * 10⁻³ V

Using the Shockley diode equation, we can rearrange it to solve for the resistance:

R = V / I = V / (Is * (exp(V / (n * [tex]V_t[/tex])) - 1))

Substituting the given values:

R = (86.0 * 1010⁻³  V) / (0.950 * 10⁻³  A * (exp(86.0 * 10⁻³  V / (1 * 25.85 * 10⁻³  V)) - 1))

Let's simplify it step by step:

R = (86.0 * 10⁻³  V) / (0.950 * 10⁻³  A * (exp(86.0 * 10⁻³  V / (1 * 25.85 * 10⁻³  V)) - 1))

R = (86.0 * 10⁻³  V) / (0.950 * 10⁻³  A * (exp(3.327) - 1))

R = (86.0 * 10⁻³  V) / (0.950 * 10⁻³  A * (27.850 - 1))

R = (86.0 * 10⁻³   V) / (0.950 * 10⁻³  A * 26.850)

Now, we can simplify further:

R = (86.0 / 0.950) * (10⁻³  V / 10⁻³  A) / 26.850

R = 90.526 * 1 / 26.850

R ≈ 3.371 Ω

Therefore, the resistance of the diode at a voltage of 86.0 mV is approximately 3.371 Ω.

Learn more about Diode Current at

brainly.com/question/30548627

#SPJ4

A person decides to use an old pair of eyeglasses to make some optical instruments. He knows that the near point in his left eye is 48.0 cm and the near point in his right eye is 120 cm. (a) What is the maximum angular magnification he can produce in a telescope? (b) If he places the lenses 10.0 cm apart, what is the maximum overall magnification he can produce in a microscope? Hint: Go back to basics and use the thin-lens equation to solve part (b).

Answers

Part- A- the maximum angular magnification in the telescope is infinite.

Part B-the maximum overall magnification in the microscope is 2401.

(a) The maximum angular magnification in a telescope can be calculated using the formula:

M = 1 + D/F

where M is the angular magnification, D is the near point distance, and F is the focal length of the eyepiece.

Given that the near point in the person's left eye is 48.0 cm, and assuming the eyepiece focal length is f, we can set up the equation:

M = 1 + (48.0 cm) / f

To maximize the angular magnification, we want to minimize the focal length of the eyepiece. Therefore, the maximum angular magnification occurs when the focal length of the eyepiece approaches zero.

(b) To calculate the maximum overall magnification in a microscope, we can use the thin lens equation:

1/f = 1/v - 1/u

where f is the focal length of the lens, v is the image distance, and u is the object distance.

Given that the lenses are placed 10.0 cm apart, we can assume the object distance u is equal to the focal length f, and the image distance v is equal to the sum of the focal length and the distance between the lenses.

Therefore:

u = f

v = f + 10.0 cm

Substituting these values into the thin lens equation:

1/f = 1/(f + 10.0 cm) - 1/f

Simplifying the equation and solving for f:

1/f = 1/(f + 0.1 m) - 1/f

2/f = 1/(0.1 m)

f = 0.05 m

The maximum overall magnification in the microscope can be calculated using:

M = 1 + D/F

where D is the near point distance and F is the focal length of the lens.

Given that the near point in the person's right eye is 120 cm, we can calculate the overall magnification:

M = 1 + (120 cm) / (0.05 m)

M = 2401

learn more about angular magnification here:

https://brainly.com/question/32576776

#SPJ11

A sound wave is modeled as AP = 2.09 Pa sin(51.19 m 1 .3 – 17405 s ..t). What is the maximum change in pressure, the wavelength, the frequency, and the speed of the sound wave?

Answers

The maximum change in pressure is 2.09 Pa, the wavelength is approximately 0.123 m, the frequency is around 2770.4 Hz, and the speed of the sound wave is approximately 340.1 m/s.

To determine the maximum change in pressure, we can look at the amplitude of the wave. In the given model, the amplitude (A) is 2.09 Pa, so the maximum change in pressure is 2.09 Pa.

Next, let's find the wavelength of the sound wave. The wavelength (λ) is related to the wave number (k) by the equation λ = 2π/k. In this case, the wave number is given as 51.19 m^(-1), so we can calculate the wavelength using [tex]\lambda = 2\pi /51.19 m^{-1} \approx 0.123 m[/tex].

The frequency (f) of the sound wave can be determined using the equation f = ω/2π, where ω is the angular frequency. From the given model, we have ω = 17405 s⁻¹, so the frequency is
[tex]f \approx 17405/2\pi \approx 2770.4 Hz[/tex].

Finally, the speed of the sound wave (v) can be calculated using the equation v = λf. Plugging in the values we get,
[tex]v \approx 0.123 m \times 2770.4 Hz \approx 340.1 m/s[/tex].

Learn more about wavelength here:

https://brainly.com/question/30532991

#SPJ11

"Which of the following is an aspect of perception that allows us to find parts of a picture and the whole picture simultaneously? A. Whole and part O
B. Depth O
C Figure and ground

Answers

The aspect of perception that allows us to find parts of a picture and the whole picture simultaneously is the whole and part.

Perceiving an image as a whole, while recognizing its individual parts, is the result of the concept of whole and part that underlies gestalt psychology, which studies the ways in which people interpret sensory information.

The word "gestalt" refers to the way in which the mind organizes information into a meaningful whole. This form of psychology is focused on understanding the ways in which humans perceive the environment and the stimuli that it provides.

The perception of a picture or image as a whole rather than as individual components is one of the hallmarks of the gestalt approach.

As a result of the whole and part, one can perceive the entire picture while also identifying the individual parts that comprise it.

The concept of whole and part is a way of explaining how humans perceive visual information, and it is a fundamental aspect of gestalt psychology.

The perception of an image is not only determined by the individual elements that make it up but also by the relationships between them.

Learn more about psychology at: https://brainly.com/question/11708668

#SPJ11

At resonance, the current through an RLC circuit is: \( 5.0 \mathrm{~A} \) Maximized Minimized Zero

Answers

The maximum current through an RLC circuit can be calculated using the following equation: I(max) = V/R, where V is the voltage applied across the circuit and R is the resistance of the circuit. Therefore, the answer is maximized.

An RLC circuit is an electrical circuit containing a resistor, an inductor, and a capacitor, which are the three most commonly used electronic components. When a sinusoidal voltage is applied to an RLC series circuit, an alternating current (AC) flows through it.

The current through an RLC circuit at resonance is maximized. Resonance can be described as the point at which the inductive reactance of a coil is equal to the capacitive reactance of a capacitor. At this point, the inductive reactance and capacitive reactance cancel out, resulting in a minimum impedance in the circuit and a maximum current flow.

The phase angle between the current and voltage in an RLC circuit at resonance is zero, indicating that they are in phase. At resonance, the RLC circuit's current is determined solely by the resistance of the circuit's resistor. The current in an RLC circuit at resonance is determined by the following equation:

I = V/R

Where, V is the voltage applied across the circuit, R is the resistance of the circuit, and I is the current flowing through the circuit. At resonance, the current through an RLC circuit is maximized.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

The induced EMF in a double loop of wire has a magnitude of 2.7 V when the magnetic flux is changed from 3.87 T m2 to 1.55 T m2. How much time is required for this change in flux? Give answer in s.

Answers

It takes approximately 1.48 seconds for the change in magnetic flux to occur in the double loop of wire.

The induced electromotive force (EMF) in a double loop of wire is given by Faraday's law of electromagnetic induction, which states that the EMF is equal to the rate of change of magnetic flux through the loop. The formula for EMF is given as:

EMF = -N * (ΔΦ/Δt)

Where: EMF is the induced electromotive force, N is the number of turns in the loop, ΔΦ is the change in magnetic flux, and Δt is the change in time.

In the given question, the magnitude of the induced EMF is given as 2.7 V, and the change in magnetic flux (ΔΦ) is from 3.87 T m^2 to 1.55 T m^2.

Using the formula above, we can rearrange it to solve for Δt:

Δt = -N * (ΔΦ / EMF)

Substituting the given values:

Δt = -1 * ((1.55 T m^2 - 3.87 T m^2) / 2.7 V)

Simplifying the expression:

Δt = -1.48 s

Since time cannot be negative, we take the absolute value:

Δt = 1.48 s

Therefore, it takes approximately 1.48 seconds for the change in magnetic flux to occur in the double loop of wire.

Learn more about magnetic flux from the link

https://brainly.com/question/14411049

#SPJ11

What is the formula for the capacitance of a parallel capacitor? Explain each term used
in the formula. 2. What is the formula for camivalent (net) capacitance if capacitances are connected in
parallel combination? 3. What is the formula for equivalent (net) capacitance if capacitances are connected in
series combination?
4. What happens to the net capacitance if the capacitors are connected in series?
5. What happens to the net capacitance if the capacitors are connected in parallel?

Answers

1. The formula for the capacitance of a parallel capacitor is given by:

  [tex]C_{\text{parallel}} = C_1 + C_2 + C_3 + \ldots[/tex]

  In this formula, [tex]C_{\text{parallel}}[/tex] represents the total capacitance of the parallel combination, and [tex]C_1, C_2, C_3, \ldots[/tex] represent the individual capacitances of the capacitors connected in parallel. The total capacitance in a parallel combination is equal to the sum of the individual capacitances.

2. The formula for the net capacitance in a parallel combination is the same as the formula for the capacitance of a parallel capacitor. It is given by:

  [tex]C_{\text{net}} = C_1 + C_2 + C_3 + \ldots[/tex]

  Here, [tex]C_{\text{net}}[/tex] represents the total net capacitance of the parallel combination, and [tex]C_1, C_2, C_3, \ldots[/tex] represent the individual capacitances connected in parallel. The net capacitance in a parallel combination is equal to the sum of the individual capacitances.

3. The formula for the equivalent capacitance in a series combination is given by:

  [tex]\frac{1}{C_{\text{series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \ldots[/tex]

  In this formula, [tex]C_{\text{series}}[/tex] represents the total equivalent capacitance of the series combination, and [tex]C_1, C_2, C_3, \ldots[/tex] represent the individual capacitances connected in series. The reciprocal of the total equivalent capacitance is equal to the sum of the reciprocals of the individual capacitances.

4. When capacitors are connected in series, the net capacitance decreases. The total equivalent capacitance in a series combination is always less than the smallest individual capacitance. The effective capacitance is inversely proportional to the number of capacitors in series.

5. When capacitors are connected in parallel, the net capacitance increases. The total capacitance in a parallel combination is equal to the sum of the individual capacitances. The effective capacitance is additive, and the resulting capacitance is greater than any of the individual capacitances.

To know more about Capacitance here: https://brainly.com/question/27753307

#SPJ11

Use the given graph to find: 1. Slope = 250 2. Intercept = 0 Then use these values to find the value of ratio (L2) when Rs= 450 ohm, L2 The value of ratio is 0 n 450 400 350 300 250 Rs(ohm) 200 150 100 50 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 L2/L1

Answers

1. Slope = 250:To find the slope of the line, we look at the graph, and it gives us the formula y=mx+b. In this case, y is the L2/L1 ratio, x is the Rs value, m is the slope, and b is the intercept.

The slope is 250 as shown in the graph.2. Intercept

= 0:The intercept of a line is where it crosses the y-axis, which occurs when x

= 0. This means that the intercept of the line in the graph is at (0, 0).Now let's find the value of ratio (L2) when Rs

= 450 ohm, L2, using the values we found above.

= mx+b Substituting the values of m and b in the equation, we get the

= 250x + 0Substituting the value of Rs

= 450 in the equation, we

= 250(450) + 0y

= 112500

= 450 ohm, L2/L1 ratio is equal to 112500.

To know more about Substituting visit:

https://brainly.com/question/29383142

#SPJ11

A shopper standing 2.25 m from a convex security mirror sees his image with a magnification of 0.215.
A. What is his image distance in meters, measured from the surface of the mirror, given that the object distance is positive?
B. What is the focal length of the mirror, in meters?
C. What is its radius of curvature in meters?

Answers

A) The image distance is 0.4838m measured from the surface of the mirror.B)the focal length of the mirror is 1.621m. C) the radius of curvature of the mirror is 3.242m.

A shopper standing 2.25m from a convex security mirror sees his image with a magnification of 0.215.

A) Magnification (m) is given by the equation:m = -v/u where,m is the magnificationv is the image distance, u is the object distance, m = -0.215 (the negative sign shows that the image is inverted),u = -2.25m (the negative sign shows that the object is in front of the mirror),v = ?.

We know that, m = -v/uv

= -v/0.215u × 0.215

= -v (by cross-multiplication)

v = -0.215u × 2.25v

= -0.4838m (correct to 4 decimal places). Therefore, the image distance is 0.4838m measured from the surface of the mirror.

B. The focal length (f) of the mirror is given by the equation:1/f = 1/v - 1/u where,1/f is the power of the mirror and is measured in diopters.v is the image distance,u is the object distance. We know that,

1/f = 1/v - 1/u

= 1/-0.4838 - 1/2.25 (substituting the value of v and u)

=-2.066 + 0.4444

=-1.621 (correct to 3 decimal places). Thus, the focal length of the mirror is 1.621m.

C. The radius of curvature (R) is given by the equation: R = 2fR

= 2 × 1.621R

= 3.242m (correct to 3 decimal places). Therefore, the radius of curvature of the mirror is 3.242m.

To know more about Focal length visit-

brainly.com/question/31755962

#SPJ11

A circuit has a 42.3 pF capacitor, a 59.6 pF capacitor and a
69.4 pF capacitor in parallel with each other. What is the
equivalent capacitance (in pico-Farads) of these three
capacitors?

Answers

The equivalent capacitance of three capacitors in parallel is 171.3 pF.

The equivalent capacitance of three capacitors in parallel is the sum of the individual capacitances. Here, we have three capacitors of capacitance 42.3 pF, 59.6 pF, and 69.4 pF, which are in parallel to each other. Thus, the total capacitance is the sum of these three values as follows;

Total capacitance = 42.3 pF + 59.6 pF + 69.4 pF = 171.3 pF Therefore, the equivalent capacitance of these three capacitors is 171.3 pico-Farads. Another way to represent the total capacitance of capacitors in parallel is by using the formula shown below. Here, C1, C2, C3,....Cn represents the capacitance of capacitors that are connected in parallel. C = C1 + C2 + C3 + .......Cn .

Thus, in the present problem, substituting the values of the three capacitors, we get, C = 42.3 pF + 59.6 pF + 69.4 pF = 171.3 pF.

To know more about capacitance visit

https://brainly.com/question/13200919

#SPJ11

A runner taking part in a 195 m dash must run around the end of a non-standard size track that has a circular arc with a radius of curvature of 26 m. If she completes the 195 m dash in 34.4 s and runs at constant speed throughout the race, what is her centripetal acceleration (in rad/s2) as she runs the curved portion of the track?

Answers

The centripetal acceleration of the runner can be calculated using the formula a = v^2 / r, where v is the velocity and r is the radius of curvature.

Given:

Distance covered by the runner on the curved portion of the track: 195 m

Radius of curvature: 26 m

Time taken to complete the race: 34.4 s

We can calculate the velocity of the runner using the formula v = d / t, where d is the distance and t is the time:

v = 195 m / 34.4 s = 5.67 m/s

Now, we can calculate the centripetal acceleration using the formula a = v^2 / r:

a = (5.67 m/s)^2 / 26 m = 1.23 m/s^2

Therefore, the centripetal acceleration of the runner as she runs the curved portion of the track is 1.23 m/s^2.

To learn more about centripetal acceleration click here.

brainly.com/question/8825608

#SPJ11

Electrical power and the home:
a. What is the typical unit of electricity usage that electrical power companies use to charge their
customers?
b. What is the physical quantity represented by this unit?

Answers

a. The typical unit of electricity usage that power companies use is kWh.

b. The unit kWh represents energy.

a. The typical unit of electricity usage that electrical power companies use to charge their customers is the kilowatt-hour (kWh). This unit is used to measure the amount of electrical energy consumed by a device or household over a given period of time. The kilowatt-hour is a combination of two units: kilowatts (kW), which measures power, and hours (h), which measures time. It represents the amount of energy equivalent to using one kilowatt (1000 watts) of power for one hour.

b. The physical quantity represented by the unit kilowatt-hour (kWh) is energy. Energy is a fundamental physical property that can exist in various forms, including electrical energy. In the context of electricity usage, the kilowatt-hour measures the amount of electrical energy consumed or produced. It indicates the total energy consumed by an appliance, device, or household over a specific time interval. The kilowatt-hour is a convenient unit for measuring and billing electrical energy consumption, as it takes into account both the power (rate of energy transfer) and the duration of usage.

To learn more about electrical power, Visit:

https://brainly.in/question/1063947

#SPJ11

(a) At time t=0 , a sample of uranium is exposed to a neutron source that causes N₀ nuclei to undergo fission. The sample is in a supercritical state, with a reproduction constant K>1 . A chain reaction occurs that proliferates fission throughout the mass of uranium. The chain reaction can be thought of as a succession of generations. The N₀ fissions produced initially are the zeroth generation of fissions. From this generation, N₀K neutrons go off to produce fission of new uranium nuclei. The N₀ K fissions that occur subsequently are the first generation of fissions, and from this generation N₀ K² neutrons go in search of uranium nuclei in which to cause fission. The subsequent N₀K² fissions are the second generation of fissions. This process can continue until all the uranium nuclei have fissioned. Show that the cumulative total of fissions N that have occurred up to and including the n th generation after the zeroth generation is given byN=N₀ (Kⁿ⁺¹ - 1 / K-1)

Answers

Using the formula N = N₀ (Kⁿ⁺¹ - 1 / K-1), we can determine the cumulative total of fissions up to the n th generation.

The cumulative total of fissions N that have occurred up to and including the n th generation after the zeroth generation can be calculated using the formula N = N₀ (Kⁿ⁺¹ - 1 / K-1). Here's a step-by-step explanation:

1. The zeroth generation consists of N₀ fissions.
2. In the first generation, N₀K neutrons are released, resulting in N₀K fissions.
3. In the second generation, N₀K² neutrons are released, resulting in N₀K² fissions.
4. This process continues until the n th generation.
5. To calculate the cumulative total of fissions, we need to sum up the number of fissions in each generation up to the n th generation.
6. The formula N = N₀ (Kⁿ⁺¹ - 1 / K-1) represents the sum of a geometric series, where K is the reproduction constant and n is the number of generations.
7. By plugging in the values of N₀, K, and n into the formula, we can calculate the cumulative total of fissions N that have occurred up to and including the n th generation.

For example, if N₀ = 100, K = 2, and n = 3, the formula becomes N = 100 (2⁴ - 1 / 2-1), which simplifies to N = 100 (16 - 1 / 1), resulting in N = 100 (15) = 1500.

So, using the formula N = N₀ (Kⁿ⁺¹ - 1 / K-1), we can determine the cumulative total of fissions up to the n th generation.

to learn more about fissions

https://brainly.com/question/82412

#SPJ11

A wire in the shape of a rectangular loop of dimensions a=2m and b=1m moves with a constant velocity v=10 m/s away from a very long straight wire carrying a current i= 10 A in the plane of the loop. The side of the rectangle with dimension a is the one next to the wire and parallel to it. The resistance of the loop is 5 Ohms. Find the current in the loop at the instant the long side of the rectangle is distance 20 m from the wire?

Answers

The current in the loop at the instant the long side of the rectangle is 20 m from the wire is 0.8 A.

To find the current in the loop, we can use Faraday's law of electromagnetic induction. According to Faraday's law, the induced electromotive force (EMF) in a loop is equal to the rate of change of magnetic flux through the loop. In this case, the magnetic field produced by the long straight wire will pass through the loop as it moves away, inducing an EMF.

The EMF induced in the loop can be calculated using the equation EMF = -B * l * v, where B is the magnetic field strength, l is the length of the wire segment inside the magnetic field, and v is the velocity of the wire. In this scenario, the wire is moving away from the straight wire, so the induced EMF will oppose the change. Therefore, the EMF is given by EMF = -B * a * v, where a is the length of the side of the rectangle next to the wire.

The magnetic field produced by the long straight wire at a distance r can be calculated using the equation B = (μ0 * i) / (2π * r), where μ0 is the permeability of free space and i is the current in the wire. Substituting the given values, we have B = (4π * 10^(-7) * 10) / (2π * r) = (2 * 10^(-6)) / r.

The induced EMF can be equated to the product of the current in the loop (I) and the resistance of the loop (R) according to Ohm's law, giving us I * R = -B * a * v. Substituting the values for B, a, v, and R, we can solve for I. At a distance of 20 m from the wire, the current in the loop is found to be 0.8 A.

To learn more about the current visit:

brainly.com/question/1100341

#SPJ11

A 1.97 m tall man stands 1.46 m from a lens with focal length −52 cm. How tall (in m ) is his image formed by the lens? Be sure to include the sign to indicate orientation!

Answers

The answer is that the image formed by the lens is 1.46 meters tall.

The focal length of the lens, f is given as −52 cm. The distance of the man from the lens, u is given as 1.46m. The image distance, v can be calculated using the lens formula as below:

[tex]\[\frac{1}{f}=\frac{1}{v}-\frac{1}{u}\][/tex]

Substituting the given values in the above equation, we get,

[tex]\[\frac{1}{(-52)}=\frac{1}{v}-\frac{1}{1.46}\][/tex]

Solving the above equation for v gives, $v=-1.02m$

The negative sign indicates that the image is formed on the same side of the lens as the object, which is on the opposite side of the lens with respect to the observer.

Now the magnification is given as,

[tex]\[m=\frac{v}{u}=-0.6986\][/tex]

The negative sign indicates that the image is inverted. The height of the image can be calculated as,

[tex]\[h=mu=-1.02 \times 0.6986=-0.712m\][/tex]

Again the negative sign indicates that the image is inverted. Hence, the height of the image is 0.712 meters.

Learn more about The focal length of the lens: https://brainly.com/question/23839310

#SPJ11

Х Suppose a distant world with surface gravity of 6.56 m/s2 has an atmospheric pressure of 8.52 x 104 Pa at the surface. (a) What force is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of a methane ocean? N (b) What is the weight of a 10.0-m deep cylindrical column of methane with radius 2.00 m? Note: The density of liquid methane is 415 kg/m3. N (c) Calculate the pressure at a depth of 10.0 m in the methane ocean. Pa

Answers

Formula to calculate force F exerted by the atmosphere on a disk-shaped region is:

(a) 2.03 x 105 N

(b) 1.30 x 108 N

(c) 4.19 x 105 Pa

F = PA

Here, atmospheric pressure P = 8.52 × 104 Pa

Radius of the disk-shaped region r = 2.00 m

Force exerted F = PA = (8.52 × 104) × (πr2)

= (8.52 × 104) × (π × 2.00 m × 2.00 m)

= 2.03 x 105 N

2.03 x 105 N

b) Weight of the column of methane can be calculated as:

Weight = Density × Volume × g

Where, Density of liquid methane = 415 kg/m3

Volume of the cylindrical column V = (πr2h) = πr2 × h = (π × 2.00 m × 2.00 m) × 10.0 m

= 125.6 m3

g = acceleration due to gravity = 6.56 m/s2

Weight of the cylindrical column = Density × Volume × g

= 415 kg/m3 × 125.6 m3 × 6.56 m/s2

= 1.30 x 108 N

1.30 x 108 Nc)Pressure at a depth of 10.0 m in the methane ocean can be calculated as:

P = P0 + ρgh

Where, P0 = atmospheric pressure = 8.52 × 104 Pa

Density of liquid methane = 415 kg/m3

g = acceleration due to gravity = 6.56 m/s2

Depth of the methane ocean h = 10.0 m

Substituting the values in the formula:

P = P0 + ρgh

= 8.52 × 104 Pa + (415 kg/m3) × (6.56 m/s2) × (10.0 m)

= 4.19 x 105 Pa

Learn more about acceleration due to gravity: https://brainly.com/question/17331289

#SPJ11

18-1 (a) Calculate the total electromagnetic energy inside an oven of volume 1 m3 heated to a temperature of 400°F. (b) Show that the thermal energy of the air in the oven is a factor of approxi- mately 101° larger than the electromagnetic energy.

Answers

(a) The total electromagnetic energy inside an oven can be calculated by considering the thermal radiation emitted by the oven. We can use the Stefan-Boltzmann law, which states that the power radiated by a blackbody is proportional to the fourth power of its temperature. The energy density of blackbody radiation can be calculated using the equation u = σT^4, where u is the energy density, σ is the Stefan-Boltzmann constant, and T is the temperature in Kelvin.

To convert the temperature of 400°F to Kelvin, we use the formula T(K) = (T(°F) + 459.67) * (5/9). Substituting the value into the equation, we obtain the energy density of the electromagnetic energy inside the oven. Multiplying the energy density by the volume of the oven gives us the total electromagnetic energy.

(b) To compare the thermal energy of the air in the oven to the electromagnetic energy, we need to calculate the ratio between the two. Dividing the thermal energy by the electromagnetic energy will give us the approximate factor by which the thermal energy of the air is larger than the electromagnetic energy.

The thermal energy of the air can be calculated using the specific heat capacity of air and the change in temperature. The ratio between the thermal energy and the electromagnetic energy will provide an approximate indication of the difference in magnitude between the two forms of energy.

By performing the calculations, we can determine the ratio and conclude that the thermal energy of the air in the oven is a factor of approximately 101° larger than the electromagnetic energy.

To learn more about Electromagnetic Energy click here:

brainly.com/question/23924486

#SPJ11

What is the energy of a photon that has the same wavelength as a
100-eV electron? Show work.

Answers

We can now find the energy of the photon using E=hc/λE = (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(1.24 × 10^-6 m)= 1.6 × 10^-15 .J The energy of the photon that has the same wavelength as a 100-eV electron is 1.6 × 10^-15 J (or 1.0 × 10^2 eV).

We are given that the wavelength of the photon is equal to the wavelength of a 100-eV electron. We are to find the energy of the photon. We know that the energy of a photon is given byE

=hc/λWhereE is the energy of the photon h is Planck’s constant the

=6.626 × 10^-34 J·s (joule second)c is the speed of light c

=3 × 10^8 m/sλ is the wavelength of the photon We are also given that the wavelength of the photon is equal to the wavelength of a 100-eV electron. Therefore, we know thatλ

=hc/E

We are given that the energy of the electron is 100 eV. We need to convert this to joules. We know that 1 eV

= 1.602 × 10^-19 J Therefore, 100 eV

= 100 × 1.602 × 10^-19 J

= 1.602 × 10^-17 J Substituting the values into the equation, we getλ

=hc/E

=hc/1.602 × 10^-17

= 1.24 × 10^-6 m We now know the wavelength of the photon. We can now find the energy of the photon using E

=hc/λE

= (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(1.24 × 10^-6 m)

= 1.6 × 10^-15 .J The energy of the photon that has the same wavelength as a 100-eV electron is

1.6 × 10^-15 J (or 1.0 × 10^2 eV).

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

3. The electric field of an electromagnetic wave is given by Ē = 7.2 x 106 ) V/m. If the propagation speed is 3 x 108 k, calculate the magnetic field vector of the wave.

Answers

An electromagnetic wave is a type of wave that consists of electric and magnetic fields oscillating perpendicular to each other and propagating through space. They exhibit both wave-like and particle-like properties.

Electromagnetic waves consist of both electric and magnetic fields, which are perpendicular to each other and to the direction of wave propagation. The electric field oscillates in one plane, while the magnetic field oscillates in a plane perpendicular to the electric field. Therefore, electromagnetic waves are transverse waves.

Given, Electric field of an electromagnetic wave Ē = 7.2 x 106 V/m. Propagation speed v = 3 x 108 m/s We need to calculate the magnetic field vector of the wave. According to the equation of an electromagnetic wave, we know that;  E = cBV = E/BorB = E/V Where, B is the magnetic field vector. V is the propagation speed. E is the electric field vector. Substituting the given values in the above formula we get; B = Ē/v= (7.2 x 10⁶)/ (3 x 10⁸)= 0.024 V.s/m. The magnetic field vector of the wave is 0.024 V.s/m.

For similar problems on electromagnetic waves visit:

https://brainly.com/question/13106270

#SPJ11

Imagine that you have 8 Coulombs of electric charge in a tetrahedron. Calculate the size of the electric flux to one of the four sides.?

Answers

8 Coulombs of electric charge in a tetrahedron. The area of a side of a tetrahedron can be calculated based on its geometry.

To calculate the electric flux through one of the sides of the tetrahedron, we need to know the magnitude of the electric field passing through that side and the area of the side.

The electric flux (Φ) is given by the equation:

Φ = E * A * cos(θ)

where:

E is the magnitude of the electric field passing through the side,

A is the area of the side, and

θ is the angle between the electric field and the normal vector to the side.

Since we have 8 Coulombs of electric charge, the electric field can be calculated using Coulomb's law:

E = k * Q / r²

where:

k is the electrostatic constant (8.99 x 10^9 N m²/C²),

Q is the electric charge (8 C in this case), and

r is the distance from the charge to the side.

Once we have the electric field and the area, we can calculate the electric flux.

To know more about tetrahedron refer here:

https://brainly.com/question/11946461#

#SPJ11

We know now that kWh (or GJ) is a unit of energy and kW is a unit of power, and energy = power x time. But, what is the difference between energy and power? or how would you define each? (hint: think units, how is a watt represented in joules?). Please provide some examples to illustrate the difference; could be from any system (lights, motors, etc).

Answers

Energy and power are related concepts in physics, but they represent different aspects of a system. Energy refers to the capacity to do work or the ability to produce a change.

It is a scalar quantity and is measured in units such as joules (J) or kilowatt-hours (kWh). Energy can exist in various forms, such as kinetic energy (associated with motion), potential energy (associated with position or state), thermal energy (associated with heat), and so on.

Power, on the other hand, is the rate at which energy is transferred, converted, or used. It is the amount of energy consumed or produced per unit time. Power is a scalar quantity measured in units such as watts (W) or kilowatts (kW).

It represents how quickly work is done or energy is used. Mathematically, power is defined as the ratio of energy to time, so it can be expressed as P = E/t.

To illustrate the difference between energy and power, let's consider the example of a light bulb. The energy consumed by the light bulb is measured in kilowatt-hours (kWh) and represents the total amount of electrical energy used over a period of time.

The power rating of the light bulb is measured in watts (W) and indicates the rate at which electrical energy is converted into light and heat. So, if a light bulb has a power rating of 60 watts and is switched on for 5 hours, it will consume 300 watt-hours (0.3 kWh) of energy.

Similarly, in the case of an electric motor, the energy consumed would be measured in kilowatt-hours (kWh), representing the total amount of electrical energy used to perform work.

The power of the motor, measured in kilowatts (kW), would indicate how quickly the motor can convert electrical energy into mechanical work. The higher the power rating, the more work the motor can do in a given amount of time.

To learn more about energy click here: brainly.com/question/29792091

#SPJ11

Part A A gas is contained in a cylinder with a pressure of 120 kPa and an initial volume of 0.58 m? How much work is done by the gas as it expands at constant pressure to twice its initial volume? Express your answer using two significant figures. Pa] ΑΣΦ ? W. J Submit Beavest Answer Part B How much work is done by the gas as it is compressed to one-third its initial volume? Express your answer using two significant figures. | ΑΣφ ? J W-

Answers

A. The work done by the gas as it expands at constant pressure to twice its initial volume is 83 J.

B. The work done by the gas as it is compressed to one-third its initial volume is -73 J.

To calculate the work done by the gas, we use the formula:

Work = Pressure × Change in Volume

A. For the first scenario, the gas is expanding at constant pressure. The initial pressure is given as 120 kPa, and the initial volume is 0.58 m³. The final volume is twice the initial volume, which is 2 × 0.58 m³ = 1.16 m³.

Therefore, the change in volume is 1.16 m³ - 0.58 m³ = 0.58 m³.

Substituting the values into the formula, we get:

Work = (120 kPa) × (0.58 m³) = 69.6 kJ = 83 J (rounded to two significant figures).

B. For the second scenario, the gas is being compressed. The initial volume is 0.58 m³, and the final volume is one-third of the initial volume, which is (1/3) × 0.58 m³ = 0.1933 m³.

The change in volume is 0.1933 m³ - 0.58 m³ = -0.3867 m³.

Substituting the values into the formula, we get:

Work = (120 kPa) × (-0.3867 m³) = -46.4 kJ = -73 J (rounded to two significant figures).

The negative sign indicates that work is done on the gas as it is being compressed.

To know more about work done click here:

https://brainly.com/question/32263955

#SPJ11

5. The energy cost of ozone production from air is 10 eV per 03 molecule. Calculate daily ozone production (in kg/day) by 300 kW DBD discharge.

Answers

The daily ozone production by a 300 kW DBD discharge is approximately X kg/day.

To calculate the daily ozone production, we need to consider the energy cost of ozone production from air and the power of the DBD discharge. The given information states that the energy cost of ozone production from air is 10 eV per O3 molecule.

Step 1: Conversion from energy to mass

First, we need to convert the energy cost to a more suitable unit for mass calculations. We can use the relationship E = mc^2, where E is the energy in joules, m is the mass in kilograms, and c is the speed of light (approximately 3 x 10^8 m/s). Since we know the energy cost per molecule (10 eV) and Avogadro's number (6.022 x 10^23 molecules/mol), we can calculate the energy per mole of ozone.

Step 2: Calculation of ozone production

Next, we need to determine the number of moles of ozone that can be produced by the 300 kW DBD discharge in one day. To do this, we divide the power (300 kW) by the energy per mole of ozone to get the number of moles of ozone produced per second. Then, we multiply this by the number of seconds in a day to obtain the total moles of ozone produced in one day.

Step 3: Conversion to mass

Finally, we can convert the moles of ozone produced to mass by multiplying by the molar mass of ozone (approximately 48 g/mol). This gives us the daily ozone production in grams. To convert grams to kilograms, we divide the result by 1000.

Learn more about energy cost

brainly.com/question/32885403

#SPJ11

The
speed of a car is found by dividing the distance traveled by the
time required to travel that distance. Consider a car that traveled
18.0 miles in 0.969 hours. What's the speed of car in km / h
(k

Answers

The speed of the car is approximately 29.02 km/h, given that it traveled 18.0 miles in 0.969 hours.

To convert the speed of the car from miles per hour to kilometers per hour, we need to use the conversion factor that 1 mile is equal to 1.60934 kilometers.

Given:

Distance traveled = 18.0 milesTime taken = 0.969 hours

To calculate the speed of the car, we divide the distance traveled by the time taken:

Speed (in miles per hour) = Distance / Time

Speed (in miles per hour) = 18.0 miles / 0.969 hours

Now, we can convert the speed from miles per hour to kilometers per hour by multiplying it by the conversion factor:

Speed (in kilometers per hour) = Speed (in miles per hour) × 1.60934

Let's calculate the speed in kilometers per hour:

Speed (in kilometers per hour) = (18.0 miles / 0.969 hours) × 1.60934

Speed (in kilometers per hour) = 29.02 km/h

Therefore, the speed of the car is approximately 29.02 km/h.

The complete question should be:

The speed of a car is found by dividing the distance traveled by the time required to travel that distance. Consider a car that traveled 18.0 miles in 0.969 hours. What's the speed of car in km / h (kilometer per hour)?

To learn more about speed, Visit:

https://brainly.com/question/13262646

#SPJ11

Other Questions
The charts show the distribution of data for two classes on the time they spend on homework. Use center measures and variability measures to compare the average time spent on homework by both classes. Using data, the following equations are estimated log( price )= (0.132)11.71 (0.077)1.043log( nox ),n=506,R 2=0.264 log( price )= (0.188)9.23(0.066)0.718log( nox )+ (0.019)0.306rooms ,n=506,R 2=0.514 (iii) Is the relationship between the simple and multple regression estimates as you predicted in part (ii)? Does this mean that 0.718 is definitely closer to the true elasticity than 1.043 ? (iv) Notice that the standard error on the estimator for 1also decreased. How did including rooms in the regression impact each of the determinants of the standard error and explain why overall the standard error fell. (v) Does including rooms change the statistical significance at the 5% level of log(nox) in this model? (vi) Calculate the adjusted R 2of the longer regression model. Is it much different than the ordinary R 2reported? Which of the following is a clear warning sign that more courage to be rational in the decision making process is needed? a.Not taking enough time to decide b.Excessive emotionality c.Taking too much time to decide d.A tendency to play around with ideas Robotic Atlanta Inc. just paid a dividend of $4.00 per share (that is, D0 = 4.00). The dividends of Robotic Atlanta are expected to grow at a rate of 20 percent next year (that is, g1 = .20) and at a rate of 10 percent the following year (that is, g2 = .10). Thereafter (i.e., from year 3 to infinity) the growth rate in dividends is expected to be 5 percent per year. Assuming the required rate of return on Robotic Atlanta stock is 22 percent, compute the current price of the stock. (Round your answer to 2 decimal places and record your answer without dollar sign or commas). Question 1 Saved Listen Which of the following was the main purpose of Bradford's Of Plymouth Plantation? a) to tell later settlers how to survive the wilderness b) to create a model of behavior for Puritans c) to attempt to interpret God's plan for the Puritans in regard to everything that occurred to them in establishing Plymouth d) to document historical events Question 2 Saved ) Listen True or False: In "Origin of Disease and Medicine," the Ravens were the first to meet in council. True False The nurse receives an order to administer Medication M 60 mg IV push now The drug reference information about rate of soninistration is 25 g or any action har over at east 30 seconds The rate of administration for this ordered medicationis Which of the following was one of the primary results of the Many Labs Replication Project?O The U.S. government stopped funding psychological research. O The replication crisis was declared to be over. O Studies that followed the exact same procedure produced highly variable results. O None of the results could be successfully replicated. In considering the three primary missions of a criminal court, which one stands out to you as the important?A. to administer justice in a fair and impartial manner;B. to protect the individual rights of persons accused of crimes; andC. to provide an authority for controlling crime. Consider the formation of Propylene (C3H6) by the gas-phase thermal cracking of n-butane (C4H10): C4H10 C3H6 + CH4 Ten mol/s of n-butane is fed into a steady-state reactor which is maintained at a constant temperature T = 450 K and a constant pressure P = 20 bar. Assuming the exit stream from the reactor to be at equilibrium, determine the composition of the product stream and the flow rate of propylene produced. Make your calculations by considering the following cases: (a) The gas phase in the reactor is modeled as an ideal gas mixture (b) The gas phase mixture fugacities are determined by using the generalized correlations for the second virial coefficient The patient has a history of heart failure and is now re-admitted to the hospital with worsening signs of heart failure (but NOT a heart attack). Which lab test is mostlikely to indicate worsening heart failure?A. BNPB. amylaseC. troponin levelsD ALT Prescription: nitrofurantoin 7 mg/kg/day given infour divided doses for a 39 lb childStock strength: nitrofurantoin oral suspension 25 mg/5 mLWhat method should be used? ------------" Draw a Lewis structure of a stable compound with formula C5H9OCl that does not contain any C=C double bonds or triple bonds and your structure must include a ring. (There are several possible answers). Show each step that you took in order to determine the correct bonding of the atoms (counting valence electrons, single bonding all atoms together, recounting valence electrons, etc and show the chiral center(show if they are R or S, E or Z, cis or trans An important consequence of the decision in Re Spectrum Plus Ltd [2005] UKHL 41 is that Caribbean companies that have borrowed on the security of book debts are now free to fund general operations out of receipts on receivables.Discuss Purrfect Pets is a local pet supply store with a following of loyal customers who appreciate the personal service the store's employees provide. After a very profitable year, Purrfect Pets is expanding by opening two more stores. Before hiring employees for the new stores, the manager is considering the idea of conducting a job analysis for each position.1. How does job analysis support human resource management activities?2.Briefly describe each of the methods commonly used for gathering job analysis data. Please give examples of each job analysis gathering method.3. If Purrfect Pets choose to use interviews as data collection method for job analysis. What are the advantages and disadvantages of using interviews to collect job analysis data? Give two types of peripheral storage media that the tablet computer could use. Case StudyManager Taking Credit for Subordinates WorkCharacters:Janice, Chief of Research and Development - Janice is a highly educated top executive in charge of research and development.John, Janices assistant - John is Janices underpaid assistant, struggling to support his family. His performance evaluations have always been more than adequate.Situation:As one of his research projects, John designs a creative software package that addresses a major concern of tracking the progress of various projects within the company. He shares this program with Janice, hoping it will bring him a much needed promotion and raise.Janices boss has asked her to address this problem of tracking project status, but the pressures of her position kept her from setting aside sufficient time to do the requested work.Janice, eager to successfully complete the job her boss assigned, is thinking of presenting Johns program to her boss and passing it off as her own. If John objects, she can threaten to lower his performance evaluations or possibly even fire him. If he agrees to go along with the scheme, she can give him a raise and a promotion.What should Janice do om 3: Linear RegressionFINAL PROJECT: DAY 3he manager at Stellarbeans, collected data on the daily high temperature and revenue from coffee salmne days this past fall are shown in the table belowDay 1 Day 2 Day 3 Day 4 Day 5 Day & Day 7 Day 8 Day 9High Temperature, t 54Coffee Sales, f(t)5070585248$2900 $3080 $2500 $2580 $2200 $2700 $3000 $3620 $372e linear regression function, f(t), that estimates the day's coffee sales with a high temperature Your patient has hypothyroidism from a dysfunctional thyroid gland. Which of the following would you be least likely to see? a Tachycardia and exophthalmosb. Elevated TSH, low T3, low T4 blood levels C. Constipation and decreased appetite D. Cold intolerance and lethargy Moving at its maximum safe speed, an amusement park carousel takes 12 S to complete a revolution. At the end of the ride, it slows down smoothly, taking 3.3 rev to come to a stop. Part A What is the magnitude of the rotational acceleration of the carousel while it is slowing down? Susan and Dale are undergoing IVF via ICSI. What are two possible reasons that ICSI would be required in Susan and Dales case? For this procedure, where is the sperm collected from and why? What is involved in the process of IVF after sperm is collected via ICSI? Steam Workshop Downloader